
Agilent Technologies

Infiniium

9000A Programmer’s
Reference

Programmer's Reference

Publication Number 54904-97002
July 2010

This reference applies directly to software revision code 2.50 and later.

© Copyright Agilent Technologies 2010
All Rights Reserved.

9000A Series Infiniium
Oscilloscopes

ii

In This Book

This book is your guide to programming the Infiniium 9000A Series Oscilloscopes.
Chapters 1 through 5 give you an introduction to programming the oscilloscopes,
along with necessary conceptual information. These chapters describe basic program
communications, interface, syntax, data types, and status reporting.
Chapter 6 shows example BASIC and C programs, and describes chunks of one
program to show you some typical applications. The BASIC and C example programs
are also shipped on a disk with the oscilloscope.
Chapters 7 through 25 describe the commands used to program the oscilloscopes.
Each chapter describes the set of commands that belong to an individual subsystem,
and explains the function of each command.
Chapter 33 describes error messages.

Contents

Contents-1

1 Introduction to Programming
Communicating with the Oscilloscope 1-3
Output Command 1-4
Device Address 1-4
Instructions 1-4
Instruction Header 1-4
White Space (Separator) 1-5
Braces 1-5
Ellipsis 1-5
Square Brackets 1-5
Command and Query Sources 1-5
Program Data 1-6
Header Types 1-7
Duplicate Mnemonics 1-9
Query Headers 1-10
Program Header Options 1-11
Character Program Data 1-11
Numeric Program Data 1-12
Embedded Strings 1-13
Program Message Terminator 1-13
Common Commands within a Subsystem 1-14
Selecting Multiple Subsystems 1-14
Programming Getting Started 1-14
Initialization 1-15
Example Program using HP Basic 1-16
Using the DIGITIZE Command 1-17
Receiving Information from the Oscilloscope 1-19
String Variable Example 1-20
Numeric Variable Example 1-20
Definite-Length Block Response Data 1-21
Multiple Queries 1-22
Oscilloscope Status 1-22

2 Connectivity
LAN Interface Connector 2-3
GPIB Interface Connector 2-3
Default Startup Conditions 2-4
Interface Capabilities 2-5
GPIB Command and Data Concepts 2-6
Communicating Over the GPIB Interface 2-7
Communicating Over the LAN Interface 2-8
Communicating via Telnet and Sockets 2-9
Bus Commands 2-11

3 Message Communication and System Functions

Contents

Contents-2

Protocols 3-3

4 Status Reporting
Status Reporting Data Structures 4-5
Status Byte Register 4-8
Service Request Enable Register 4-10
Message Event Register 4-10
Trigger Event Register 4-10
Standard Event Status Register 4-11
Standard Event Status Enable Register 4-12
Operation Status Register 4-13
Operation Status Enable Register 4-14
Mask Test Event Register 4-15
Mask Test Event Enable Register 4-16
Acquisition Done Event Register 4-17
Process Done Event Register 4-17
Trigger Armed Event Register 4-17
Auto Trigger Event Register 4-17
Error Queue 4-18
Output Queue 4-18
Message Queue 4-19
Clearing Registers and Queues 4-19

5 Remote Acquisition Synchronization
Introduction 5-2
Programming Flow 5-2
Setting Up the Oscilloscope 5-2
Acquiring a Waveform 5-2
Retrieving Results 5-3
Acquisition Synchronization 5-3
Single Shot Device Under Test (DUT) 5-5
Averaging Acquisition Synchronization 5-6

6 Programming Conventions
Truncation Rule 6-3
The Command Tree 6-4
Infinity Representation 6-12
Sequential and Overlapped Commands 6-12
Response Generation 6-12
EOI 6-12

7 Sample Programs
Sample Program Structure 7-3
Sample C Programs 7-4
Listings of the Sample Programs 7-14
gpibdecl.h Sample Header 7-15

Contents

Contents-3

learnstr.c Sample Program 7-17
sicl_IO.c Sample Program 7-21
natl_IO.c Sample Program 7-26
init.bas Sample Program 7-30
lrn_str.bas Sample Program 7-38

8 Acquire Commands
AVERage 8-3
AVERage:COUNt 8-4
COMPlete 8-5
COMPlete:STATe 8-7
INTerpolate 8-8
MODE 8-9
POINts:ANALog 8-11
POINts:DIGital? 8-15
POINts:AUTO 8-16
SEGMented:COUNt 8-17
SEGMented:INDex 8-18
SEGMented:TTAGs 8-19
SRATe:ANALog (Analog Sample RATe) 8-20
SRATe Sample Rate Tables 8-22
SRATe:DIGital (Digital Channels Sample RATe) 8-23
SRATe:ANALog:AUTO 8-25
SRATe:DIGital:AUTO 8-26

9 Bus Commands
B1:TYPE 9-3
BIT<M> 9-4
BITS 9-5
CLEar 9-6
CLOCk 9-7
:CLOCk:SLOPe 9-8
DISPlay 9-9
LABel 9-10
READout 9-11

10 Channel Commands
BWLimit 10-4
COMMonmode 10-5
DIFFerential 10-6
DIFFerential:SKEW 10-7
DISPlay 10-8
DISPlay:AUTO 10-9
DISPlay:OFFSet 10-11
DISPlay:RANGe 10-12
DISPlay:SCALe 10-14

Contents

Contents-4

INPut 10-16
ISIM:APPLy 10-17
ISIM:BANDwidth 10-19
ISIM:BWLimit 10-21
ISIM:CONVolve 10-23
ISIM:DEConvolve 10-24
ISIM:DELay 10-25
ISIM:SPAN 10-27
ISIM:STATe 10-29
LABel 10-31
OFFSet 10-32
PROBe 10-33
PROBe:ATTenuation 10-35
PROBe:COUPling 10-36
PROBe:EADapter 10-37
PROBe:ECOupling 10-39
PROBe:EXTernal 10-41
PROBe:EXTernal:GAIN 10-42
PROBe:EXTernal:OFFSet 10-44
PROBe:EXTernal:UNITs 10-46
PROBe:GAIN 10-48
PROBe:HEAD:ADD 10-49
PROBe:HEAD:DELete ALL 10-50
PROBe:HEAD:SELect 10-51
PROBe:ID? 10-52
PROBe:SKEW 10-53
PROBe:STYPe 10-54
RANGe 10-55
SCALe 10-56
UNITs 10-57

11 Calibration Commands
Oscilloscope Calibration 11-3
Probe Calibration 11-4

Calibration Commands 11-5
OUTPut 11-6
SKEW 11-7
STATus? 11-8

12 Common Commands
 *CLS (Clear Status) 12-4
*ESE (Event Status Enable) 12-5
*ESR? (Event Status Register) 12-7
*IDN? (Identification Number) 12-9

Contents

Contents-5

*LRN? (Learn) 12-10
*OPC (Operation Complete) 12-12
*OPT? (Option) 12-13
*PSC (Power-on Status Clear) 12-14
*RCL (Recall) 12-15
*RST (Reset) 12-16
*SAV (Save) 12-17
*SRE (Service Request Enable) 12-18
*STB? (Status Byte) 12-20
*TRG (Trigger) 12-22
*TST? (Test) 12-23
*WAI (Wait) 12-24

13 Digital Commands
DISPlay 13-3
LABel 13-4
SIZE 13-5
THReshold 13-6

14 Disk Commands
CDIRectory 14-3
COPY 14-4
DELete 14-5
DIRectory? 14-6
LOAD 14-7
MDIRectory 14-8
PWD? 14-9
SAVE:IMAGe 14-10
SAVE:JITTer 14-11
SAVE:LISTing 14-12
SAVE:MEASurements 14-13
SAVE:SETup 14-14
SAVE:WAVeform 14-15
CSV and TSV Header Format 14-17
BIN Header Format 14-20
SEGMented 14-36

15 Display Commands
CGRade 15-3
CGRade:LEVels? 15-5
COLumn 15-7
CONNect 15-8
DATA? 15-9
GRATicule 15-10
LABel 15-12
LINE 15-13

Contents

Contents-6

PERSistence 15-14
ROW 15-15
SCOLor 15-16
STRing 15-19
TAB 15-20
TEXT 15-21

16 Function Commands
FUNCtion<N>? 16-4
ABSolute 16-5
ADD 16-6
AVERage 16-7
COMMonmode 16-9
DIFF (Differentiate) 16-10
DISPlay 16-12
DIVide 16-13
FFT:FREQuency 16-14
FFT:REFerence 16-15
FFT:RESolution? 16-16
FFT:WINDow 16-17
FFTMagnitude 16-19
FFTPhase 16-21
HIGHpass 16-23
HORizontal 16-24
HORizontal:POSition 16-25
HORizontal:RANGe 16-26
INTegrate 16-27
INVert 16-29
LOWPass 16-31
MAGNify 16-32
MAXimum 16-34
MINimum 16-36
MULTiply 16-38
OFFSet 16-40
RANGe 16-41
SMOoth 16-42
SQRT 16-44
SQUare 16-45
SUBTract 16-46
VERSus 16-48
VERTical 16-50
VERTical:OFFSet 16-51
VERTical:RANGe 16-52

17 Hardcopy Commands
AREA 17-3

Contents

Contents-7

DPRinter 17-4
FACTors 17-6
IMAGe 17-7
PRINters? 17-8

18 Histogram Commands
AXIS 18-4
MODE 18-5
SCALe:SIZE 18-6
WINDow:DEFault 18-7
WINDow:SOURce 18-8
WINDow:LLIMit 18-10
WINDow:RLIMit 18-11
WINDow:BLIMit 18-12
WINDow:TLIMit 18-13

19 InfiniiScan (ISCan) Commands
DELay 19-3
MEASurement:FAIL 19-4
MEASurement:LLIMit 19-5
MEASurement 19-6
MEASurement:ULIMit 19-7
MODE 19-8
NONMonotonic:EDGE 19-9
NONMonotonic:HYSTeresis 19-10
NONMonotonic:SOURce 19-11
RUNT:HYSTeresis 19-12
RUNT:LLEVel 19-13
RUNT:SOURce 19-14
RUNT:ULEVel 19-15
SERial:PATTern 19-16
SERial:SOURce 19-17
ZONE<N>:MODE 19-18
ZONE<N>:PLACement 19-19
ZONE:SOURce 19-20
ZONE<N>:STATe 19-21

20 Limit Test Commands
FAIL 20-3
LLIMit 20-4
MEASurement 20-5
RESults? 20-6
TEST 20-7
ULIMit 20-8

21 Marker Commands

Contents

Contents-8

CURSor? 21-3
MODE 21-4
TSTArt 21-5
TSTOp 21-7
VSTArt 21-9
TVSTOp 21-10
X1Position 21-12
X2Position 21-13
X1Y1source 21-14
X2Y2source 21-16
XDELta? 21-18
Y1Position 21-19
Y2Position 21-20
YDELta? 21-21

22 Mask Test Commands
ALIGn 22-4
AlignFIT 22-5
AMASk:CREate 22-7
AMASk:SOURce 22-8
AMASk:SAVE | STORe 22-10
AMASk:UNITs 22-11
AMASk:XDELta 22-12
AMASk:YDELta 22-14
AUTO 22-16
AVERage 22-17
AVERage:COUNt 22-18
COUNt:FAILures? 22-19
COUNt:FUI? 22-20
COUNt:FWAVeforms? 22-21
COUNt:UI? 22-22
COUNt:WAVeforms? 22-23
DELete 22-24
ENABle 22-25
FOLDing 22-26
FOLDing:BITS 22-27
HAMPlitude 22-28
IMPedance 22-29
INVert 22-31
LAMPlitude 22-32
LOAD 22-33
NREGions? 22-34
PROBe:IMPedance? 22-35
RUMode 22-36
RUMode:SOFailure 22-38

Contents

Contents-9

SCALe:BIND 22-39
SCALe:X1 22-40
SCALe:XDELta 22-41
SCALe:Y1 22-42
SCALe:Y2 22-43
SOURce 22-44
STARt | STOP 22-46
STIMe 22-47
TITLe? 22-48
TRIGger:SOURce 22-49

23 Measure Commands
AREA 23-9
BWIDth 23-10
CDRRATE 23-11
CGRade:CROSsing 23-13
CGRade:DCDistortion 23-14
CGRade:EHEight 23-15
CGRade:EWIDth 23-17
CGRade:EWINdow 23-19
CGRade:JITTer 23-21
CGRade:QFACtor 23-22
CLEar 23-23
CLOCk 23-24
CLOCk:METHod 23-25
CLOCk:METHod:DEEMphasis 23-28
CLOCk:VERTical 23-29
CLOCk:VERTical:OFFSet 23-30
CLOCk:VERTical:RANGe 23-31
CROSsing 23-32
CTCDutycycle 23-33
CTCJitter 23-35
CTCNwidth 23-37
CTCPwidth 23-39
DATarate 23-41
DELTatime 23-43
DELTatime:DEFine 23-45
DUTYcycle 23-47
FALLtime 23-49
FFT:DFRequency 23-51
FFT:DMAGnitude 23-53
FFT:FREQuency 23-55
FFT:MAGNitude 23-57
FFT:PEAK1 23-59
FFT:PEAK2 23-60

Contents

Contents-10

FFT:THReshold 23-61
FREQuency 23-62
HISTogram:HITS 23-64
HISTogram:M1S 23-66
HISTogram:M2S 23-68
HISTogram:M3S 23-70
HISTogram:MAX? 23-72
HISTogram:MEAN? 23-73
HISTogram:MEDian? 23-74
HISTogram:MIN? 23-75
HISTogram:PEAK? 23-76
HISTogram:PP? 23-77
HISTogram:STDDev? 23-78
HOLDtime 23-79
JITTer:HISTogram 23-82
JITTer:MEASurement 23-83
JITTer:SPECtrum 23-84
JITTer:SPECtrum:HORizontal 23-85
JITTer:SPECtrum:HORizontal:POSition 23-86
JITTer:SPECtrum:HORizontal:RANGe 23-88
JITTer:SPECtrum:VERTical 23-89
JITTer:SPECtrum:VERTical:OFFSet 23-90
JITTer:SPECtrum:VERTical:RANGe 23-91
JITTer:SPECtrum:WINDow 23-92
JITTer:STATistics 23-93
JITTer:TRENd 23-94
JITTer:TRENd:SMOoth 23-95
JITTer:TRENd:SMOoth:POINts 23-96
JITTer:TRENd:VERTical 23-97
JITTer:TRENd:VERTical:OFFSet 23-98
JITTer:TRENd:VERTical:RANGe 23-99
NAME 23-100
NCJitter 23-101
NPERiod 23-103

23-104
NPULses 23-105
NWIDth 23-106
OVERshoot 23-108
PERiod 23-110
PHASe 23-113
PPULses 23-115
PREShoot 23-116
PWIDth 23-118
QUALifier<M>:CONDition 23-120
QUALifier<M>:SOURce 23-121

Contents

Contents-11

QUALifier<M>:STATe 23-122
RESults? 23-123
RISetime 23-126
RJDJ:ALL? 23-128
RJDJ:BANDwidth 23-130
RJDJ:BER 23-131
RJDJ:EDGE 23-133
RJDJ:INTerpolate 23-134
RJDJ:PLENgth 23-135
RJDJ:SOURce 23-137
RJDJ:STATe 23-139
RJDJ:TJRJDJ? 23-140
RJDJ:UNITs 23-141
SCRatch 23-142
SENDvalid 23-143
SETuptime 23-144
SLEWrate 23-147
SOURce 23-149
STATistics 23-151
TEDGe 23-152
THResholds:ABSolute 23-154
THResholds:HYSTeresis 23-156
THResholds:METHod 23-158
THResholds:PERCent 23-160
THResholds:TOPBase:METHod 23-162
THResholds:TOPBase:ABSolute 23-164
TIEClock2 23-166
TIEData 23-169
TIEFilter:STARt 23-172
TIEFilter:STATe 23-173
TIEFilter:STOP 23-174
TIEFilter:TYPE 23-175
TMAX 23-176
TMIN 23-178
TVOLt 23-180
UITouijitter 23-182
UNITinterval 23-183
VAMPlitude 23-185
VAVerage 23-187
VBASe 23-189
VLOWer 23-191
VMAX 23-193
VMIDdle 23-195
VMIN 23-197
VPP 23-199

Contents

Contents-12

VRMS 23-201
VTIMe 23-204
VTOP 23-206
VUPPer 23-208
WINdow 23-210

24 Pod Commands
DISPlay 24-3
THReshold 24-4
PSKew 24-5

25 Root Level Commands
ADER? (Acquisition Done Event Register) 25-4
AER? (Arm Event Register) 25-5
ATER? (Auto Trigger Event Register) 25-6
AUToscale 25-7
AUToscale:CHANnels {ALL | DISPlayed} 25-8
AUToscale:PLACement {STACk | SEParate | OVERlay} 25-9
AUToscale:VERTical 25-10
BEEP 25-11
BLANk 25-12
CDISplay 25-13
DIGitize 25-14
DISable DIGital 25-16
ENABle DIGital 25-17
MTEE 25-18
MTER? 25-19
MODel? 25-20
OPEE 25-21
OPER? 25-22
OVLRegister? 25-23
PDER? (Processing Done Event Register) 25-24
PRINt 25-25
RECall:SETup 25-26
RUN 25-27
SERial (Serial Number) 25-28
SINGle 25-29
STATus? 25-30
STOP 25-32
STORe:JITTer 25-33
STORe:SETup 25-34
STORe:WAVeform 25-35
TER? (Trigger Event Register) 25-36
VIEW 25-37

26 Self-Test Commands

Contents

Contents-13

CANCel 26-3
SCOPETEST 26-4

27 System Commands
DATE 27-3
DEBug 27-4
DSP 27-6
ERRor? 27-7
HEADer 27-8
LOCK 27-10
LONGform 27-11
PRESet 27-13
SETup 27-14
TIME 27-16

28 Time Base Commands
POSition 28-3
RANGe 28-4
REFClock 28-5
REFerence 28-6
ROLL:ENABLE 28-7
SCALe 28-8
VIEW 28-9
WINDow:DELay 28-10
WINDow:POSition 28-12
WINDow:RANGe 28-13
WINDow:SCALe 28-14

29 Trigger Commands

Organization of Trigger Modes and Commands 29-5

Summary of Trigger Modes and Commands 29-7
Trigger Modes 29-10
AND:ENABle 29-12
AND:SOURce 29-13
HOLDoff 29-14
HOLDoff:MAX 29-15
HOLDoff:MIN 29-16
HOLDoff:MODe 29-17
HTHReshold 29-18
HYSTeresis 29-19
LEVel 29-20
LTHReshold 29-21
SWEep 29-22

Contents

Contents-14

Trigger Mode-Specific Commands 29-23
COMM:BWIDth 29-24
COMM:ENCode 29-25
COMM:PATTern 29-26
COMM:POLarity 29-27
COMM:SOURce 29-28
DELay:ARM:SOURce 29-29
DELay:ARM:SLOPe 29-30
DELay:EDELay:COUNt 29-31
DELay:EDELay:SOURce 29-32
DELay:EDELay:SLOPe 29-33
DELay:MODE 29-34
DELay:TDELay:TIME 29-35
DELay:TRIGger:SOURce 29-36
DELay:TRIGger:SLOPe 29-37
EDGE:COUPling 29-38
EDGE:SLOPe 29-39
EDGE:SOURce 29-40
GLITch:POLarity 29-41
GLITch:SOURce 29-42
GLITch:WIDTh 29-43
PATTern:CONDition 29-44
PATTern:LOGic 29-45
PWIDth:DIRection 29-46
PWIDth:POLarity 29-47
PWIDth:SOURce 29-48
PWIDth:TPOint 29-49
PWIDth:WIDTh 29-50
RUNT:POLarity 29-51
RUNT:QUALified 29-52
RUNT:SOURce 29-53
RUNT:TIME 29-54
SHOLd:CSOurce 29-55
SHOLd:CSOurce:EDGE 29-56
SHOLd:DSOurce 29-57
SHOLd:HoldTIMe (HTIMe) 29-58
SHOLd:MODE 29-59
SHOLd:SetupTIMe 29-60
STATe:CLOCk 29-61
STATe:LOGic 29-62
STATe:LTYPe 29-63
STATe:SLOPe 29-64
TIMeout:CONDition 29-65
TIMeout:SOURce 29-66
TIMeout:TIME 29-67

Contents

Contents-15

TRANsition:DIRection 29-68
TRANsition:SOURce 29-69
TRANsition:TIME 29-70
TRANsition:TYPE 29-71
TV:LINE 29-72
TV:MODE 29-73
TV:POLarity 29-74
TV:SOURce 29-75
TV:STANdard 29-76
TV:UDTV:ENUMber 29-77
TV:UDTV:HSYNc 29-78
TV:UDTV:HTIMe 29-79
TV:UDTV:PGTHan 29-80
TV:UDTV:POLarity 29-81
WINDow:CONDition 29-82
WINDow:SOURce 29-83
WINDow:TIME 29-84
WINDow:TPOint 29-85

Advanced COMM Trigger Mode and Commands 29-86
COMM:BWIDth 29-88
COMM:ENCode 29-89
COMM:LEVel 29-90
COMM:PATTern 29-91
COMM:POLarity 29-92
COMM:SOURce 29-93

Advanced Pattern Trigger Mode and Commands 29-94
PATTern:CONDition 29-96
PATTern:LOGic 29-97
:PATTern:THReshold:LEVel 29-98
:PATTern:THReshold:POD<N> 29-99

Advanced State Trigger Mode and Commands 29-100
STATe:CLOCk 29-102
STATe:LOGic 29-103
STATe:LTYPe 29-104
STATe:SLOPe 29-105
:STATe:THReshold:LEVel 29-106

Advanced Delay By Event Mode and Commands 29-107
EDLY:ARM:SOURce 29-109
EDLY:ARM:SLOPe 29-110
EDLY:EVENt:DELay 29-111

Contents

Contents-16

EDLY:EVENt:SOURce 29-112
EDLY:EVENt:SLOPe 29-113
EDLY:TRIGger:SOURce 29-114
EDLY:TRIGger:SLOPe 29-115

Advanced Delay By Time Mode and Commands 29-116
TDLY:ARM:SOURce 29-118
TDLY:ARM:SLOPe 29-119
TDLY:DELay 29-120
TDLY:TRIGger:SOURce 29-121
TDLY:TRIGger:SLOPe 29-122

Advanced Standard TV Mode and Commands 29-123
STV:FIELd 29-125
STV:LINE 29-126
STV:SOURce 29-127
STV:SPOLarity 29-128

Advanced User Defined TV Mode and Commands 29-129
UDTV:ENUMber 29-132
UDTV:PGTHan 29-133
UDTV:POLarity 29-134
UDTV:SOURce 29-135

Advanced Trigger Violation Modes 29-136
VIOLation:MODE 29-137

Pulse Width Violation Mode and Commands 29-138
VIOLation:PWIDth:DIRection 29-140
VIOLation:PWIDth:POLarity 29-141
VIOLation:PWIDth:SOURce 29-142
VIOLation:PWIDth:WIDTh 29-143

Setup Violation Mode and Commands 29-144
VIOLation:SETup:MODE 29-147
VIOLation:SETup:SETup:SETup:CSOurce 29-148
VIOLation:SETup:SETup:CSOurce:LEVel 29-149
VIOLation:SETup:SETup:CSOurce:EDGE 29-150
VIOLation:SETup:SETup:DSOurce 29-151
VIOLation:SETup:SETup:DSOurce:HTHReshold 29-152
VIOLation:SETup:SETup:DSOurce:LTHReshold 29-153
VIOLation:SETup:SETup:TIME 29-154
VIOLation:SETup:HOLD:CSOurce 29-155
VIOLation:SETup:HOLD:CSOurce:LEVel 29-156

Contents

Contents-17

VIOLation:SETup:HOLD:CSOurce:EDGE 29-157
VIOLation:SETup:HOLD:DSOurce 29-158
VIOLation:SETup:HOLD:DSOurce:HTHReshold 29-159
VIOLation:SETup:HOLD:DSOurce:LTHReshold 29-160
VIOLation:SETup:HOLD:TIME 29-161
VIOLation:SETup:SHOLd:CSOurce 29-162
VIOLation:SETup:SHOLd:CSOurce:LEVel 29-163
VIOLation:SETup:SHOLd:CSOurce:EDGE 29-164
VIOLation:SETup:SHOLd:DSOurce 29-165
VIOLation:SETup:SHOLd:DSOurce:HTHReshold 29-166
VIOLation:SETup:SHOLd:DSOurce:LTHReshold 29-167
VIOLation:SETup:SHOLd:SetupTIMe (STIMe) 29-168
VIOLation:SETup:SHOLd:HoldTIMe (HTIMe) 29-169

Transition Violation Mode 29-170
VIOLation:TRANsition 29-172
VIOLation:TRANsition:SOURce 29-173
VIOLation:TRANsition:SOURce:HTHReshold 29-174
VIOLation:TRANsition:SOURce:LTHReshold 29-175
VIOLation:TRANsition:TYPE 29-176

30 Waveform Commands
BANDpass? 30-6
BYTeorder 30-7
COMPlete? 30-8
COUNt? 30-9
COUPling? 30-10
DATA? 30-11
DATA? Example for Digital Channels 30-28
FORMat 30-43
POINts? 30-46
PREamble 30-47
SEGMented:ALL 30-53
SEGMented:COUNt? 30-54
SEGMented:TTAG? 30-55
SEGMented:XLISt? 30-56
SOURce 30-57
STReaming 30-59
TYPE? 30-60
VIEW 30-61
XDISplay? 30-63
XINCrement? 30-64
XORigin? 30-65
XRANge? 30-66
XREFerence? 30-67

Contents

Contents-18

XUNits? 30-68
YDISplay? 30-69
YINCrement? 30-70
YORigin? 30-71
YRANge? 30-72
YREFerence? 30-73
YUNits? 30-74

31 Waveform Memory Commands
CLEar 31-3
DISPlay 31-4
LOAD 31-5
SAVE 31-6
XOFFset 31-7
XRANge 31-8
YOFFset 31-9
YRANge 31-10

32 Serial Data Equalization Commands
CTLequalizer:DISPlay 32-4
CTLequalizer:SOURce 32-5
CTLequalizer:DCGain 32-6
CTLequalizer:P1 32-7
CTLequalizer:P2 32-8
CTLequalizer:RATe 32-9
CTLequalizer:VERTical 32-10
CTLequalizer:VERTical:OFFSet 32-11
CTLequalizer:VERTical:RANGe 32-12
CTLequalizer:ZERo 32-13
SPRocessing:FFEQualizer:DISPlay 32-14
SPRocessing:FFEQualizer:SOURce 32-15
FFEQualizer:NPRecursor 32-16
SPRocessing:FFEQualizer:NTAPs 32-17
FFEequalizer:RATe 32-18
SPRocessing:FFEQualizer:TAP 32-19
SPRocessing:FFEQualizer:TAP:PLENgth 32-20
SPRocessing:FFEQualizer:TAP:WIDTh 32-21
SPRocessing:FFEQualizer:TAP:DELay 32-22
SPRocessing:FFEQualizer:TAP:AUTomatic 32-23
SPRocessing:FFEQualizer:TAP :BANDwidth 32-24
SPRocessing:FFEQualizer:TAP :BWMode 32-25
SPRocessing:FFEQualizer:TAP :TDELay 32-26
SPRocessing:FFEQualizer:TAP :TDMode 32-27
FFEQualizer:VERTical 32-28
FFEQualizer:VERTical:OFFSet 32-29
FFEQualizer:VERTical:RANGe 32-30

Contents

Contents-19

SPRocessing:DFEQualizer:STATe 32-31
SPRocessing:DFEQualizer:SOURce 32-32
SPRocessing:DFEQualizer:NTAPs 32-33
SPRocessing:DFEQualizer:TAP 32-34
SPRocessing:DFEQualizer:TAP:WIDTh 32-35
SPRocessing:DFEQualizer:TAP:DELay 32-36
SPRocessing:DFEQualizer:TAP:MAX 32-37
SPRocessing:DFEQualizer:TAP:MIN 32-38
SPRocessing:DFEQualizer:TAP:GAIN 32-39
SPRocessing:DFEQualizer:TAP:UTARget 32-40
SPRocessing:DFEQualizer:TAP:LTARget 32-41
SPRocessing:DFEQualizer:TAP:AUTomatic 32-42

33 Error Messages
Error Queue 33-3
Error Numbers 33-4
Command Error 33-5
Execution Error 33-6
Device- or Oscilloscope-Specific Error 33-7
Query Error 33-8
List of Error Messages 33-9

Contents

Contents-20

1

Introduction to Programming

1-2

Introduction to Programming

This chapter introduces the basics for remote programming of an oscilloscope.
The programming commands in this manual conform to the IEEE 488.2
Standard Digital Interface for Programmable Instrumentation. The
programming commands provide the means of remote control.

Basic operations that you can do with a computer and an oscilloscope include:

• Set up the oscilloscope.
• Make measurements.
• Get data (waveform, measurements, and configuration) from the

oscilloscope.
• Send information, such as waveforms and configurations, to the

oscilloscope.
You can accomplish other tasks by combining these functions.

Example Programs are Written in HP BASIC and C

The programming examples for individual commands in this manual are
written in HP BASIC and C.

1-3

Introduction to Programming
Communicating with the Oscilloscope

Communicating with the Oscilloscope

Computers communicate with the oscilloscope by sending and receiving messages
over a remote interface, such as a GPIB card (must order the N4865A GPIB-to-LAN
adapter) or a Local Area Network (LAN) card. Commands for programming normally
appear as ASCII character strings embedded inside the output statements of a “host”
language available on your computer. The input commands of the host language are
used to read responses from the oscilloscope.
For example, HP BASIC uses the OUTPUT statement for sending commands and
queries. After a query is sent, the response is usually read using the HP BASIC
ENTER statement. The ENTER statement passes the value across the bus to the
computer and places it in the designated variable.
For the GPIB interface, messages are placed on the bus using an output command and
passing the device address, program message, and a terminator. Passing the device
address ensures that the program message is sent to the correct GPIB interface and
GPIB device.
The following HP BASIC OUTPUT statement sends a command that sets the channel
1 scale value to 500 mV:

OUTPUT <device address> ;":CHANNEL1:SCALE 500E-
3"<terminator>

The device address represents the address of the device being programmed. Each of
the other parts of the above statement are explained on the following pages.

Use the Suffix Multiplier Instead

Using "mV" or "V" following the numeric voltage value in some commands
will cause Error 138 - Suffix not allowed. Instead, use the convention for the
suffix multiplier as described in chapter 3, "Message Communication and
System Functions."

1-4

Introduction to Programming
Output Command

Output Command

The output command depends entirely on the programming language. Throughout
this book, HP BASIC and ANSI C are used in the examples of individual commands.
If you are using other languages, you will need to find the equivalents of HP BASIC
commands like OUTPUT, ENTER, and CLEAR, to convert the examples.

Device Address

The location where the device address must be specified depends on the programming
language you are using. In some languages, it may be specified outside the OUTPUT
command. In HP BASIC, it is always specified after the keyword, OUTPUT. The
examples in this manual assume that the oscilloscope and interface card are at GPIB
device address 707. When writing programs, the device address varies according to
how the bus is configured.

Instructions

Instructions, both commands and queries, normally appear as strings embedded in a
statement of your host language, such as BASIC, Pascal, or C. The only time a
parameter is not meant to be expressed as a string is when the instruction's syntax
definition specifies <block data>, such as HP BASIC’s "learnstring" command. There
are only a few instructions that use block data.
Instructions are composed of two main parts:
• The header, which specifies the command or query to be sent.
• The program data, which provides additional information to clarify the meaning

of the instruction.

Instruction Header

The instruction header is one or more command mnemonics separated by colons (:).
They represent the operation to be performed by the oscilloscope. See the
“Programming Conventions” chapter for more information.
Queries are formed by adding a question mark (?) to the end of the header. Many
instructions can be used as either commands or queries, depending on whether or not
you include the question mark. The command and query forms of an instruction
usually have different program data. Many queries do not use any program data.

1-5

Introduction to Programming
White Space (Separator)

White Space (Separator)

White space is used to separate the instruction header from the program data. If the
instruction does not require any program data parameters, you do not need to include
any white space. In this manual, white space is defined as one or more spaces. ASCII
defines a space to be character 32 in decimal.

Braces

When several items are enclosed by braces, { }, only one of these elements may be
selected. Vertical line (|) indicates "or". For example, {ON | OFF} indicates that
only ON or OFF may be selected, not both.

Ellipsis

... An ellipsis (trailing dots) indicates that the preceding element may be repeated one
or more times.

Square Brackets

Items enclosed in square brackets, [], are optional.

Command and Query Sources

Many commands and queries require that a source be specified. Depending on the
command or query and the model number of Infiniium oscilloscope being used, some
of the sources are not available. The following is a list of some of the available
sources:

CHANnel1 FUNCtion1 WMEMory1 COMMonmode{1|2}

CHANnel2 FUNCtion2 WMEMory2 DIFFerential{1|2}

CHANnel3 FUNCtion3 WMEMory3 EQUalized

CHANnel4 FUNCtion4 WMEMory4 DIGital0 - DIGital15

CLOCk MTRend MSPectrum HISTogram

1-6

Introduction to Programming
Program Data

Program Data

Program data is used to clarify the meaning of the command or query. It provides
necessary information, such as whether a function should be on or off, or which
waveform is to be displayed. Each instruction's syntax definition shows the program
data and the values they accept.
When there is more than one data parameter, they are separated by commas (,). You
can add spaces around the commas to improve readability.

1-7

Introduction to Programming
Header Types

Header Types

There are three types of headers:
• Simple Command headers
• Compound Command headers
• Common Command headers

Simple Command Header
Simple command headers contain a single mnemonic. AUTOSCALE and DIGITIZE
are examples of simple command headers typically used in this oscilloscope. The
syntax is:
<program mnemonic><terminator>

or
OUTPUT 707;”:AUTOSCALE”

When program data must be included with the simple command header
(for example, :DIGITIZE CHAN1), white space is added to separate the data from
the header. The syntax is:
<program mnemonic><separator><program data><terminator>

or
OUTPUT 707;”:DIGITIZE CHANNEL1,FUNCTION2”

Compound Command Header
Compound command headers are a combination of two program mnemonics. The
first mnemonic selects the subsystem, and the second mnemonic selects the function
within that subsystem. The mnemonics within the compound message are separated
by colons. For example:
To execute a single function within a subsystem:
:<subsystem>:<function><separator><program data><terminator>

For example:

OUTPUT 707;”:CHANNEL1:BWLIMIT ON”

1-8

Introduction to Programming
Header Types

Combining Commands in the Same Subsystem
To execute more than one command within the same subsystem, use a semi-colon (;)
to separate the commands:
:<subsystem>:<command><separator><data>;<command><separator>
<data><terminator>

For example:

:CHANNEL1:INPUT DC;BWLIMIT ON

Common Command Header
Common command headers, such as clear status, control the IEEE 488.2 functions
within the oscilloscope. The syntax is:
*<command header><terminator>

No space or separator is allowed between the asterisk (*) and the command header.
*CLS is an example of a common command header.

1-9

Introduction to Programming
Duplicate Mnemonics

Duplicate Mnemonics

Identical function mnemonics can be used for more than one subsystem. For example,
you can use the function mnemonic RANGE to change both the vertical range and
horizontal range:
To set the vertical range of channel 1 to 0.4 volts full scale:

:CHANNEL1:RANGE .4

To set the horizontal time base to 1 second full scale:

:TIMEBASE:RANGE 1

In these examples, CHANNEL1 and TIMEBASE are subsystem selectors, and
determine the range type being modified.

1-10

Introduction to Programming
Query Headers

Query Headers

A command header immediately followed by a question mark (?) is a query. After
receiving a query, the oscilloscope interrogates the requested subsystem and places
the answer in its output queue. The answer remains in the output queue until it is read
or until another command is issued. When read, the answer is transmitted across the
bus to the designated listener (typically a computer). For example, the query:
:TIMEBASE:RANGE?

places the current time base setting in the output queue.
In HP BASIC, the computer input statement:
ENTER < device address > ;Range

passes the value across the bus to the computer and places it in the variable Range.
You can use queries to find out how the oscilloscope is currently configured and to
get results of measurements made by the oscilloscope.
For example, the command:
:MEASURE:RISETIME?

tells the oscilloscope to measure the rise time of your waveform and place the result
in the output queue.
The output queue must be read before the next program message is sent. For example,
when you send the query :MEASURE:RISETIME?, you must follow it with an input
statement. In HP BASIC, this is usually done with an ENTER statement immediately
followed by a variable name. This statement reads the result of the query and places
the result in a specified variable.

Handle Queries Properly

If you send another command or query before reading the result of a query,
the output buffer is cleared and the current response is lost. This also generates
a query-interrupted error in the error queue. If you execute an input statement
before you send a query, it will cause the computer to wait indefinitely.

1-11

Introduction to Programming
Program Header Options

Program Header Options

You can send program headers using any combination of uppercase or lowercase
ASCII characters. Oscilloscope responses, however, are always returned in
uppercase.
You may send program command and query headers in either long form (complete
spelling), short form (abbreviated spelling), or any combination of long form and short
form. For example:
:TIMEBASE:DELAY 1E-6 is the long form.
:TIM:DEL 1E-6 is the short form.

The rules for the short form syntax are described in the chapter, “Programming
Conventions.”

Character Program Data

Character program data is used to convey parameter information as alpha or
alphanumeric strings. For example, the :TIMEBASE:REFERENCE command can
be set to left, center, or right. The character program data in this case may be LEFT,
CENTER, or RIGHT. The command :TIMEBASE:REFERENCE RIGHT sets the
time base reference to right.
The available mnemonics for character program data are always included with the
instruction's syntax definition. You may send either the long form of commands, or
the short form (if one exists). You may mix uppercase and lowercase letters freely.
When receiving responses, uppercase letters are used exclusively.

Using Long Form or Short Form

Programs written in long form are easily read and are almost self-documenting.
The short form syntax conserves the amount of computer memory needed for
program storage and reduces I/O activity.

1-12

Introduction to Programming
Numeric Program Data

Numeric Program Data

Some command headers require program data to be expressed numerically. For
example, :TIMEBASE:RANGE requires the desired full-scale range to be expressed
numerically.
For numeric program data, you can use exponential notation or suffix multipliers to
indicate the numeric value. The following numbers are all equal:
28 = 0.28E2 = 280E-1 = 28000m = 0.028K = 28E-3K
When a syntax definition specifies that a number is an integer, it means that the number
should be whole. Any fractional part is ignored and truncated. Numeric data
parameters that accept fractional values are called real numbers. For more information
see the chapter, “Interface Functions.”
All numbers are expected to be strings of ASCII characters.

• When sending the number 9, you would send a byte representing the ASCII
code for the character “9” (which is 57).

• A three-digit number like 102 would take up three bytes (ASCII codes 49, 48,
and 50). The number of bytes is figured automatically when you include the
entire instruction in a string.

1-13

Introduction to Programming
Embedded Strings

Embedded Strings

Embedded strings contain groups of alphanumeric characters which are treated as a
unit of data by the oscilloscope. An example of this is the line of text written to the
advisory line of the oscilloscope with the :SYSTEM:DSP command:
:SYSTEM:DSP ""This is a message.""

You may delimit embedded strings with either single (') or double (") quotation marks.
These strings are case-sensitive, and spaces are also legal characters.

Program Message Terminator

The program instructions within a data message are executed after the program
message terminator is received. The terminator may be either an NL (New Line)
character, an EOI (End-Or-Identify) asserted in the GPIB interface, or a combination
of the two. Asserting the EOI sets the EOI control line low on the last byte of the data
message. The NL character is an ASCII linefeed (decimal 10).

New Line Terminator Functions Like EOS and EOT

The NL (New Line) terminator has the same function as an EOS (End Of String)
and EOT (End Of Text) terminator.

1-14

Introduction to Programming
Common Commands within a Subsystem

Common Commands within a Subsystem

Common commands can be received and processed by the oscilloscope whether they
are sent over the bus as separate program messages or within other program messages.
If you have selected a subsystem, and a common command is received by the
oscilloscope, the oscilloscope remains in the selected subsystem. For example, if the
program message
":ACQUIRE:AVERAGE ON;*CLS;COUNT 1024"

is received by the oscilloscope, the oscilloscope turns averaging on, then clears the
status information without leaving the selected subsystem.
If some other type of command is received within a program message, you must re-
enter the original subsystem after the command. For example, the program message
":ACQUIRE:AVERAGE ON;:AUTOSCALE;:ACQUIRE:AVERAGE:COUNT 1024"

turns averaging on, completes the autoscale operation, then sets the acquire average
count. Here, :ACQUIRE must be sent again after AUTOSCALE to re-enter the
ACQUIRE subsystem and set the count.

Selecting Multiple Subsystems

You can send multiple program commands and program queries for different
subsystems on the same line by separating each command with a semicolon. The
colon following the semicolon lets you enter a new subsystem. For example:
<program mnemonic><data>;:<program mnemonic><data><terminator>

:CHANNEL1:RANGE 0.4;:TIMEBASE:RANGE 1

Programming Getting Started

The remainder of this chapter explains how to set up the oscilloscope, how to retrieve
setup information and measurement results, how to digitize a waveform, and how to
pass data to the computer. The chapter, “Measure Commands” describes sending
measurement data to the oscilloscope.

You can Combine Compound and Simple Commands

Multiple program commands may be any combination of compound and simple
commands.

1-15

Introduction to Programming
Initialization

Initialization

To make sure the bus and all appropriate interfaces are in a known state, begin every
program with an initialization statement. For example, HP BASIC provides a CLEAR
command which clears the interface buffer:
CLEAR 707 ! initializes the interface of the oscilloscope

When you are using GPIB, CLEAR also resets the oscilloscope's parser. The parser
is the program that reads in the instructions you send.
After clearing the interface, initialize the oscilloscope to a preset state:
OUTPUT 707;"*RST" ! initializes the oscilloscope to a preset
state

Autoscale
The AUTOSCALE feature of Agilent Technologies digitizing oscilloscopes performs
a very useful function on unknown waveforms by automatically setting up the vertical
channel, time base, and trigger level of the oscilloscope.
The syntax for the autoscale function is:
:AUTOSCALE<terminator>

Setting Up the Oscilloscope
A typical oscilloscope setup configures the vertical range and offset voltage, the
horizontal range, delay time, delay reference, trigger mode, trigger level, and slope.
A typical example of the commands sent to the oscilloscope are:
:CHANNEL1:PROBE 10; RANGE 16;OFFSET 1.00<terminator>
:SYSTEM:HEADER OFF<terminator>
:TIMEBASE:RANGE 1E-3;DELAY 100E-6<terminator>

This example sets the time base at 1 ms full-scale (100 μs/div), with delay of 100 μs.
Vertical is set to 16 V full-scale (2 V/div), with center of screen at 1 V, and probe
attenuation of 10.

Initializing the Oscilloscope

The commands and syntax for initializing the oscilloscope are discussed in the
chapter, “Common Commands.” Refer to your GPIB manual and
programming language reference manual for information on initializing the
interface.

1-16

Introduction to Programming
Example Program using HP Basic

Example Program using HP Basic

This program demonstrates the basic command structure used to program the
oscilloscope.

10 CLEAR 707! Initialize oscilloscope interface
20 OUTPUT 707;"*RST"!Initialize oscilloscope to preset state
30 OUTPUT 707;":TIMEBASE:RANGE 5E-4"! Time base to 500 us full scale
40 OUTPUT 707;":TIMEBASE:DELAY 0"! Delay to zero
50 OUTPUT 707;":TIMEBASE:REFERENCE CENTER"! Display reference at center
60 OUTPUT 707;":CHANNEL1:PROBE 10"! Probe attenuation to 10:1
70 OUTPUT 707;":CHANNEL1:RANGE 1.6"! Vertical range to 1.6 V full scale
80 OUTPUT 707;":CHANNEL1:OFFSET -.4"! Offset to -0.4
90 OUTPUT 707;":CHANNEL1:INPUT DC"! Coupling to DC
100 OUTPUT 707;":TRIGGER:MODE EDGE"! Edge triggering
110 OUTPUT 707;":TRIGGER:LEVEL CHAN1,-.4"! Trigger level to -0.4
120 OUTPUT 707;":TRIGGER:SLOPE POSITIVE"! Trigger on positive slope
125 OUTPUT 707;":SYSTEM:HEADER OFF<terminator>
130 OUTPUT 707;":ACQUIRE:MODE RTIME"! Normal acquisition
140 OUTPUT 707;":DISPLAY:GRATICULE FRAME"! Grid off
150 END

Overview of the Program
• Line 10 initializes the oscilloscope interface to a known state.
• Line 20 initializes the oscilloscope to a preset state.
• Lines 30 through 50 set the time base, the horizontal time at 500 μs full scale, and

0 s of delay referenced at the center of the graticule.
• Lines 60 through 90 set 10:1 probe attenuation, set the vertical range to 1.6 volts

full scale, center screen at −0.4 volts, and select DC 1 Mohm impedance coupling.
• Lines 100 through 120 configure the oscilloscope to trigger at −0.4 volts with

positive edge triggering.
• Line 125 turns system headers off.
• Line 130 configures the oscilloscope for real time acquisition.
• Line 140 turns the grid off.

1-17

Introduction to Programming
Using the DIGITIZE Command

Using the DIGITIZE Command

The DIGITIZE command is a macro that captures data using the acquisition
(ACQUIRE) subsystem. When the digitize process is complete, the acquisition is
stopped. You can measure the captured data by using the oscilloscope or by
transferring the data to a computer for further analysis. The captured data consists of
two parts: the preamble and the waveform data record.
After changing the oscilloscope configuration, the waveform buffers are cleared.
Before doing a measurement, you should send the DIGITIZE command to ensure new
data has been collected.
You can send the DIGITIZE command with no parameters for a higher throughput.
Refer to the DIGITIZE command in the chapter, “Root Level Commands” for details.
When the DIGITIZE command is sent to an oscilloscope, the specified channel’s
waveform is digitized using the current ACQUIRE parameters. Before sending the
:WAVEFORM:DATA? query to download waveform data to your computer, you
should specify the WAVEFORM parameters.
The number of data points comprising a waveform varies according to the number
requested in the ACQUIRE subsystem. The ACQUIRE subsystem determines the
number of data points, type of acquisition, and number of averages used by the
DIGITIZE command. This lets you specify exactly what the digitized information
contains. The following program example shows a typical setup:
OUTPUT 707;":SYSTEM:HEADER OFF<terminator>
OUTPUT 707;":ACQUIRE:MODE RTIME"<terminator>
OUTPUT 707;":ACQUIRE:COMPLETE 100"<terminator>
OUTPUT 707;":WAVEFORM:SOURCE CHANNEL1"<terminator>
OUTPUT 707;":WAVEFORM:FORMAT BYTE"<terminator>
OUTPUT 707;":ACQUIRE:COUNT 8"<terminator>
OUTPUT 707;":ACQUIRE:POINTS 500"<terminator>
OUTPUT 707;":DIGITIZE CHANNEL1"<terminator>
OUTPUT 707;":WAVEFORM:DATA?"<terminator>

This setup places the oscilloscope into the real time sampling mode using eight
averages. This means that when the DIGITIZE command is received, the command
will execute until the waveform has been averaged at least eight times.
After receiving the :WAVEFORM:DATA? query, the oscilloscope will start
downloading the waveform information.
Digitized waveforms are passed from the oscilloscope to the computer by sending a
numerical representation of each digitized point. The format of the numerical
representation is controlled by using the :WAVEFORM:FORMAT command and may
be selected as BYTE, WORD, or ASCII.

1-18

Introduction to Programming
Using the DIGITIZE Command

The easiest method of receiving a digitized waveform depends on data structures,
available formatting, and I/O capabilities. You must convert the data values to
determine the voltage value of each point. These data values are passed starting with
the left most point on the oscilloscope's display. For more information, refer to the
chapter, “Waveform Commands.”
When using GPIB, you may abort a digitize operation by sending a Device Clear over
the bus (for example, CLEAR 707).

1-19

Introduction to Programming
Receiving Information from the Oscilloscope

Receiving Information from the Oscilloscope

After receiving a query (a command header followed by a question mark), the
oscilloscope places the answer in its output queue. The answer remains in the output
queue until it is read or until another command is issued. When read, the answer is
transmitted across the interface to the computer. The input statement for receiving a
response message from an oscilloscope's output queue typically has two parameters;
the device address and a format specification for handling the response message. For
example, to read the result of the query command :CHANNEL1:INPUT? you would
execute the HP BASIC statement:
ENTER <device address> ;Setting$

This would enter the current setting for the channel 1 coupling in the string variable
Setting$. The device address parameter represents the address of the oscilloscope.
All results for queries sent in a program message must be read before another program
message is sent. For example, when you send the query :MEASURE:RISETIME?,
you must follow that query with an input statement. In HP BASIC, this is usually
done with an ENTER statement.

The format specification for handling response messages depends on both the
computer and the programming language.

Handle Queries Properly

If you send another command or query before reading the result of a query,
the output buffer will be cleared and the current response will be lost. This will
also generate a query-interrupted error in the error queue. If you execute an
input statement before you send a query, it will cause the computer to wait
indefinitely.

1-20

Introduction to Programming
String Variable Example

String Variable Example

The output of the oscilloscope may be numeric or character data depending on what
is queried. Refer to the specific commands for the formats and types of data returned
from queries.
For the example programs, assume that the device being programmed is at device
address 707. The actual address depends on how you have configured the bus for
your own application.
In HP BASIC 5.0, string variables are case-sensitive, and must be expressed exactly
the same each time they are used. This example shows the data being returned to a
string variable:
10 DIM Rang$[30]
20 OUTPUT 707;":CHANNEL1:RANGE?"
30 ENTER 707;Rang$
40 PRINT Rang$
50 END

After running this program, the computer displays:
+8.00000E-01

Numeric Variable Example

This example shows the data being returned to a numeric variable:
10 OUTPUT 707;":CHANNEL1:RANGE?"
20 ENTER 707;Rang
30 PRINT Rang
40 END

After running this program, the computer displays:
.8

1-21

Introduction to Programming
Definite-Length Block Response Data

Definite-Length Block Response Data

Definite-length block response data allows any type of device-dependent data to be
transmitted over the system interface as a series of 8-bit binary data bytes. This is
particularly useful for sending large quantities of data or 8-bit extended ASCII codes.
The syntax is a pound sign (#) followed by a non-zero digit representing the number
of digits in the decimal integer. After the non-zero digit is the decimal integer that
states the number of 8-bit data bytes being sent. This is followed by the actual data.
For example, for transmitting 4000 bytes of data, the syntax would be:
#44000 <4000 bytes of data> <terminator>

The “4” following the pound sign represents the number of digits in the number of
bytes, and “4000” represents the number of bytes to be transmitted.

1-22

Introduction to Programming
Multiple Queries

Multiple Queries

You can send multiple queries to the oscilloscope within a single program message,
but you must also read them back within a single program message. This can be
accomplished by either reading them back into a string variable or into multiple
numeric variables. For example, you could read the result of the query
:TIMEBASE:RANGE?;DELAY? into the string variable Results$ with the command:

ENTER 707;Results$

When you read the result of multiple queries into string variables, each response is
separated by a semicolon. For example, the response of the query
:TIMEBASE:RANGE?;DELAY? would be:
<range_value>;<delay_value>

Use the following program message to read the query
:TIMEBASE:RANGE?;DELAY? into multiple numeric variables:

ENTER 707;Result1,Result2

Oscilloscope Status

Status registers track the current status of the oscilloscope. By checking the
oscilloscope status, you can find out whether an operation has completed and is
receiving triggers. The chapter, “Status Reporting” explains how to check the status
of the oscilloscope.

2

Connectivity

2-2

LAN, USB, and GPIB Interfaces

There are several types of interfaces that can be used to remotely program the
Infiniium oscilloscope including Local Area Network (LAN) interface and
GPIB interface. Telnet and sockets can also be used to connect to the
oscilloscope.

2-3

Connectivity
LAN Interface Connector

LAN Interface Connector

The oscilloscope is equipped with a LAN interface RJ-45 connector on the rear panel.
This allows direct connect to your network. However, before you can use the LAN
interface to program the oscilloscope, the network properties must be configured.
Unless you are a Network Administrator, you should contact your Network
Administrator to add the appropriate client, protocols, and configuration information
for your LAN. This information is different for every company.

GPIB Interface Connector

The oscilloscope is not equipped with a GPIB interface connector. You can, however,
order the N4865A GPIB-to-LAN adapter for the 9000A Series oscilloscope.

2-4

Connectivity
Default Startup Conditions

Default Startup Conditions

The following default conditions are established during power-up:
• The Request Service (RQS) bit in the status byte register is set to zero.
• All of the event registers are cleared.
• The Standard Event Status Enable Register is set to 0xFF hex.
• Service Request Enable Register is set to 0x80 hex.
• The Operation Status Enable Register is set to 0xFFFF hex.
• The Overload Event Enable Register is set to 0xFF hex.
• The Mask Test Event Enable Register is set to 0xFF hex.
You can change the default conditions using the *PSC command with a parameter of
1 (one). When set to 1, the Standard Event Status Enable Register is set 0x00 hex and
the Service Request Enable Register is set to 0x00 hex. This prevents the Power On
(PON) event from setting the SRQ interrupt when the oscilloscope is ready to receive
commands.

2-5

Connectivity
Interface Capabilities

Interface Capabilities

The interface capabilities of this oscilloscope, as defined by IEEE 488.1 and IEEE
488.2, are listed in Table 2-1.

Table 2-1 Interface Capabilities

Code Interface Function Capability

SH1 Source Handshake Full Capability

AH1 Acceptor Handshake Full Capability

T5 Talker Basic Talker/Serial Poll/Talk Only Mode/
Unaddress if Listen Address (MLA)

L4 Listener Basic Listener/
Unaddresses if Talk Address (MTA)

SR1 Service Request Full Capability

RL1 Remote Local Complete Capability

PP0 Parallel Poll No Capability

DC1 Device Clear Full Capability

DT1 Device Trigger Full Capability

C0 Computer No Capability

E2 Driver Electronics Tri State (1 MB/SEC MAX)

2-6

Connectivity
GPIB Command and Data Concepts

GPIB Command and Data Concepts

The GPIB interface has two modes of operation: command mode and data mode. The
interface is in the command mode when the Attention (ATN) control line is true. The
command mode is used to send talk and listen addresses and various interface
commands such as group execute trigger (GET).
The interface is in the data mode when the ATN line is false. The data mode is used
to convey device-dependent messages across the bus. The device-dependent
messages include all of the oscilloscope-specific commands, queries, and responses
found in this manual, including oscilloscope status information.

2-7

Connectivity
Communicating Over the GPIB Interface

Communicating Over the GPIB Interface

Device addresses are sent by the computer in the command mode to specify who talks
and who listens. Because GPIB can address multiple devices through the same
interface card, the device address passed with the program message must include the
correct interface select code and the correct oscilloscope address.
Device Address = (Interface Select Code * 100) + Oscilloscope Address

Interface Select Code
Each interface card has a unique interface select code. This code is used by the
computer to direct commands and communications to the proper interface. The
default is typically “7” for the GPIB interface cards.

Oscilloscope Address
Each oscilloscope on the GPIB must have a unique oscilloscope address between
decimal 0 and 30. This oscilloscope address is used by the computer to direct
commands and communications to the proper oscilloscope on an interface. The
default is typically “7” for this oscilloscope. You can change the oscilloscope address
in the Utilities, Remote Interface dialog box.

The Oscilloscope is at Address 707 for Programming Examples

The programming examples in this manual assume that the oscilloscope is at
device address 707.

Do Not Use Address 21 for an Oscilloscope Address

Address 21 is usually reserved for the Computer interface Talk/Listen address,
and should not be used as an oscilloscope address.

2-8

Connectivity
Communicating Over the LAN Interface

Communicating Over the LAN Interface

The device address used to send commands and receive data using the LAN interface
is located in the Remote Setup dialog box (Utilities > Remote Setup).

The following C example program shows how to communicate with the oscilloscope
using the LAN interface and the Agilent Standard Instrument Control Library (SICL).
#include <sicl.h>

#define BUFFER_SIZE 1024

main()
{
INST Bus;
int reason;
unsigned long actualcnt;
char buffer[BUFFER_SIZE];

 /* Open the LAN interface */
 Bus = iopen(“lan[130.29.71.143]:hpib7,7”);
 if(Bus != 0) {
 /* Bus timeout set to 20 seconds */
 itimeout(Bus, 20000);

 /* Clear the interface */
 iclear(Bus);
 /* Query and print the oscilloscope’s Id */
 iwrite(Bus, “*IDN?”, 5, 1, &actualcnt);
 iread(Bus, buffer, BUFFER_SIZE, &reason, &actualcnt);
 buffer[actualcnt - 1] = 0;

 printf(“%s\n”, buffer);
 iclose(Bus);
 }
}

2-9

Connectivity
Communicating via Telnet and Sockets

Communicating via Telnet and Sockets

Telnet
To open a connection to the oscilloscope via a telnet connection, use the following
syntax in a command prompt:

telnet Oscilloscope_IP_Address 5024

5024 is the port number and the name of the oscilloscope can be used in place of the
IP address if desired.

After typing the above command line, press enter and a SCPI command line interface
will open. You can then use this as you typically would use a command line.

Sockets
Sockets can be used to connect to your oscilloscope on either a Windows or Unix
machine.

The sockets are located on port 5025 on your oscilloscope. Between ports 5024 and
5025, only six socket ports can be opened simultaneously. It is, therefore, important
that you use a proper close routine to close the connection to the oscilloscope. If you
forget this, the connection will remain open and you may end up exceeding the limit
of six socket ports.

Some basic commands used in communicating to your oscilloscope include:

• The receive command is: recv
• The send command is: send

2-10

Connectivity
Communicating via Telnet and Sockets

Below is a programming example (for a Windows-based machine) for opening and
closing a connection to your oscilloscope via sockets.

#include <winsock2.h>

Void main ()
{
 WSADATA wsaData;
 SOCKET mysocket = NULL;
 char* ipAddress = “130.29.70.70”;
 const int ipPort = 5025;

 //Initialize Winsock
 int iResult = WSAStartup(MAKEWORD(2,2), &wsaData);
 if(iResult != NO_ERROR)
 {
 printf(“Error at WSAStartup()\n”);
 return NULL;
 }

 //Create the socket
 mySocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCOP);
 if(mySocket == INVALID_SOCKET)
 {
 printf(“Error at socket(): %ld\n”, WSAGetLastError());
 WSACleanup();
 return NULL;
 }

 sockaddr_in clientService;
 clientService.sin_family = AF_INET;
 clientService.sin.addr.s_addr = inet_addr(ipAddress);
 clientService.sin_port = htons(ipPort);

 if(connect(mySocket, (SOCKADDR*) &clientService,
sizeof(clientService)))
 {
 printf(“Failed to connect.\n”);
 WSACleanup();
 return NULL;
 }

 //Do some work here

 //Close socket when finished
 closesocket(mySocket);
}

2-11

Connectivity
Bus Commands

Bus Commands

The following commands are IEEE 488.1 bus commands (ATN true). IEEE 488.2
defines many of the actions that are taken when these commands are received by the
oscilloscope.

Device Clear
The device clear (DCL) and selected device clear (SDC) commands clear the input
buffer and output queue, reset the parser, and clear any pending commands. If either
of these commands is sent during a digitize operation, the digitize operation is aborted.

Group Execute Trigger
The group execute trigger (GET) command arms the trigger. This is the same action
produced by sending the RUN command.

Interface Clear
The interface clear (IFC) command halts all bus activity. This includes unaddressing
all listeners and the talker, disabling serial poll on all devices, and returning control
to the system computer.

2-12

Connectivity
Bus Commands

3

Message Communication and System
Functions

3-2

Message Communication and System
Functions

This chapter describes the operation of oscilloscopes that operate in
compliance with the IEEE 488.2 (syntax) standard. It is intended to give you
enough basic information about the IEEE 488.2 standard to successfully
program the oscilloscope. You can find additional detailed information about
the IEEE 488.2 standard in ANSI/IEEE Std 488.2-1987, “IEEE Standard
Codes, Formats, Protocols, and Common Commands.”

This oscilloscope series is designed to be compatible with other Agilent
Technologies IEEE 488.2 compatible instruments. Oscilloscopes that are
compatible with IEEE 488.2 must also be compatible with IEEE 488.1 (GPIB
bus standard); however, IEEE 488.1 compatible oscilloscopes may or may not
conform to the IEEE 488.2 standard. The IEEE 488.2 standard defines the
message exchange protocols by which the oscilloscope and the computer will
communicate. It also defines some common capabilities that are found in all
IEEE 488.2 oscilloscopes.
This chapter also contains some information about the message
communication and system functions not specifically defined by IEEE 488.2.

3-3

Message Communication and System Functions
Protocols

Protocols

The message exchange protocols of IEEE 488.2 define the overall scheme used by
the computer and the oscilloscope to communicate. This includes defining when it
is appropriate for devices to talk or listen, and what happens when the protocol is not
followed.

Functional Elements
Before proceeding with the description of the protocol, you should understand a few
system components, as described here.

Input Buffer The input buffer of the oscilloscope is the memory
area where commands and queries are stored prior
to being parsed and executed. It allows a computer
to send a string of commands, which could take
some time to execute, to the oscilloscope, then
proceed to talk to another oscilloscope while the first
oscilloscope is parsing and executing commands.

Output Queue The output queue of the oscilloscope is the
memory area where all output data or response
messages are stored until read by the computer.

Parser The oscilloscope's parser is the component that
interprets the commands sent to the oscilloscope and
decides what actions should be taken. “Parsing”
refers to the action taken by the parser to achieve
this goal. Parsing and execution of commands
begins when either the oscilloscope recognizes a
program message terminator, or the input buffer
becomes full. If you want to send a long sequence
of commands to be executed, then talk to another
oscilloscope while they are executing, you should
send all of the commands before sending the
program message terminator.

3-4

Message Communication and System Functions
Protocols

Protocol Overview
The oscilloscope and computer communicate using program messages and response
messages. These messages serve as the containers into which sets of program
commands or oscilloscope responses are placed.
A program message is sent by the computer to the oscilloscope, and a response
message is sent from the oscilloscope to the computer in response to a query message.
A query message is defined as being a program message that contains one or more
queries. The oscilloscope will only talk when it has received a valid query message,
and therefore has something to say. The computer should only attempt to read a
response after sending a complete query message, but before sending another program
message.

Protocol Operation
When you turn the oscilloscope on, the input buffer and output queue are cleared, and
the parser is reset to the root level of the command tree.
The oscilloscope and the computer communicate by exchanging complete program
messages and response messages. This means that the computer should always
terminate a program message before attempting to read a response. The oscilloscope
will terminate response messages except during a hard copy output.
After you send a query message, the next message should be the response message.
The computer should always read the complete response message associated with a
query message before sending another program message to the same oscilloscope.
The oscilloscope allows the computer to send multiple queries in one query message.
This is called sending a “compound query.” Multiple queries in a query message are
separated by semicolons. The responses to each of the queries in a compound query
will also be separated by semicolons.
Commands are executed in the order they are received.

Protocol Exceptions
If an error occurs during the information exchange, the exchange may not be
completed in a normal manner.

Remember this Rule of Oscilloscope Communication

The basic rule to remember is that the oscilloscope will only talk when
prompted to, and it then expects to talk before being told to do something else.

3-5

Message Communication and System Functions
Protocols

Suffix Multiplier
The suffix multipliers that the oscilloscope will accept are shown in Table 3-1.

Table 3-1 <suffix mult>

Suffix Unit
The suffix units that the oscilloscope will accept are shown in Table 3-2.

Table 3-2 <suffix unit>

Value Mnemonic Value Mnemonic

1E18 EX 1E-3 M

1E15 PE 1E-6 U

1E12 T 1E-9 N

1E9 G 1E-12 P

1E6 MA 1E-15 F

1E3 K 1E-18 A

Suffix Referenced Unit

V Volt

S Second

3-6

4

Status Reporting

4-2

Status Reporting

An overview of the oscilloscope's status reporting structure is shown in Figure
4-1. The status reporting structure shows you how to monitor specific events
in the oscilloscope. Monitoring these events lets you determine the status of
an operation, the availability and reliability of the measured data, and more.

• To monitor an event, first clear the event, then enable the event. All of the
events are cleared when you initialize the oscilloscope.

• To generate a service request (SRQ) interrupt to an external computer,
enable at least one bit in the Status Byte Register.

The Status Byte Register, the Standard Event Status Register group, and the
Output Queue are defined as the Standard Status Data Structure Model in IEEE
488.2-1987. IEEE 488.2 defines data structures, commands, and common bit
definitions for status reporting. There are also oscilloscope-defined structures
and bits.

4-3

Status Reporting

Figure 4-1

Status Reporting Overview Block Diagram

The status reporting structure consists of the registers shown here.

Table 4-1 lists the bit definitions for each bit in the status reporting data
structure.

Table 4-1 Status Reporting Bit Definition

Bit Description Definition

PON Power On Indicates power is turned on.

URQ User Request Not Used. Permanently set to zero.

CME Command Error Indicates if the parser detected an error.

EXE Execution Error Indicates if a parameter was out of range or was
inconsistent with the current settings.

4-4

Status Reporting

DDE Device Dependent ErrorIndicates if the device was unable to complete an
operation for device-dependent reasons.

QYE Query Error Indicates if the protocol for queries has been violated.

RQL Request Control Indicates if the device is requesting control.

OPC Operation Complete Indicates if the device has completed all pending
operations.

OPER Operation Status
Register

Indicates if any of the enabled conditions in the
Operation Status Register have occurred.

RQS Request Service Indicates that the device is requesting service.

MSS Master Summary StatusIndicates if a device has a reason for requesting
service.

ESB Event Status Bit Indicates if any of the enabled conditions in the
Standard Event Status Register have occurred.

MAV Message Available Indicates if there is a response in the output queue.

MSG Message Indicates if an advisory has been displayed.

USR User Event Register Indicates if any of the enabled conditions have
occurred in the User Event Register.

TRG Trigger Indicates if a trigger has been received.

WAIT
TRIG

Wait for Trigger Indicates the oscilloscope is armed and ready for
trigger.

Bit Description Definition

4-5

Status Reporting
Status Reporting Data Structures

Status Reporting Data Structures

The different status reporting data structures, descriptions, and interactions are shown
in Figure 4-2. To make it possible for any of the Standard Event Status Register bits
to generate a summary bit, you must enable the corresponding bits. These bits are
enabled by using the *ESE common command to set the corresponding bit in the
Standard Event Status Enable Register.
To generate a service request (SRQ) interrupt to the computer, you must enable at
least one bit in the Status Byte Register. These bits are enabled by using the *SRE
common command to set the corresponding bit in the Service Request Enable
Register. These enabled bits can then set RQS and MSS (bit 6) in the Status Byte
Register.
For more information about common commands, see the “Common Commands”
chapter.

4-6

Status Reporting
Status Reporting Data Structures

Figure 4-2

Status Reporting Data Structures

4-7

Status Reporting
Status Reporting Data Structures

Figure 4-2 (Continued)

Status Reporting Data Structures (Continued)

4-8

Status Reporting
Status Byte Register

Status Byte Register

The Status Byte Register is the summary-level register in the status reporting structure.
It contains summary bits that monitor activity in the other status registers and queues.
The Status Byte Register is a live register. That is, its summary bits are set and cleared
by the presence and absence of a summary bit from other event registers or queues.
If the Status Byte Register is to be used with the Service Request Enable Register to
set bit 6 (RQS/MSS) and to generate an SRQ, at least one of the summary bits must
be enabled, then set. Also, event bits in all other status registers must be specifically
enabled to generate the summary bit that sets the associated summary bit in the Status
Byte Register.
You can read the Status Byte Register using either the *STB? common command
query or the GPIB serial poll command. Both commands return the decimal-weighted
sum of all set bits in the register. The difference between the two methods is that the
serial poll command reads bit 6 as the Request Service (RQS) bit and clears the bit
which clears the SRQ interrupt. The *STB? query reads bit 6 as the Master Summary
Status (MSS) and does not clear the bit or have any effect on the SRQ interrupt. The
value returned is the total bit weights of all of the bits that are set at the present time.
The use of bit 6 can be confusing. This bit was defined to cover all possible computer
interfaces, including a computer that could not do a serial poll. The important point
to remember is that if you are using an SRQ interrupt to an external computer, the
serial poll command clears bit 6. Clearing bit 6 allows the oscilloscope to generate
another SRQ interrupt when another enabled event occurs.
The only other bit in the Status Byte Register affected by the *STB? query is the
Message Available bit (bit 4). If there are no other messages in the Output Queue, bit
4 (MAV) can be cleared as a result of reading the response to the *STB? query.
If bit 4 (weight = 16) and bit 5 (weight = 32) are set, a program would print the sum
of the two weights. Since these bits were not enabled to generate an SRQ, bit 6 (weight
= 64) is not set.

4-9

Status Reporting
Status Byte Register

Example 1 This HP BASIC example uses the *STB? query to read the contents of the
oscilloscope’s Status Byte Register when none of the register's summary bits are
enabled to generate an SRQ interrupt.
10 OUTPUT 707;":SYSTEM:HEADER OFF;*STB?" !Turn headers off
20 ENTER 707;Result !Place result in a numeric variable
30 PRINT Result !Print the result
40 End

The next program prints 132 and clears bit 6 (RQS) of the Status Byte Register. The
difference in the decimal value between this example and the previous one is the value
of bit 6 (weight = 64). Bit 6 is set when the first enabled summary bit is set, and is
cleared when the Status Byte Register is read by the serial poll command.

Example 2 This example uses the HP BASIC serial poll (SPOLL) command to read the contents
of the oscilloscope’s Status Byte Register.
10 Result = SPOLL(707)
20 PRINT Result
30 END

Use Serial Polling to Read the Status Byte Register

Serial polling is the preferred method to read the contents of the Status Byte
Register because it resets bit 6 and allows the next enabled event that occurs to
generate a new SRQ interrupt.

4-10

Status Reporting
Service Request Enable Register

Service Request Enable Register

Setting the Service Request Enable Register bits enables corresponding bits in the
Status Byte Register. These enabled bits can then set RQS and MSS (bit 6) in the
Status Byte Register.
Bits are set in the Service Request Enable Register using the *SRE command, and
the bits that are set are read with the *SRE? query. Bit 6 always returns 0. Refer to
the Status Reporting Data Structures shown in Figure 4-2.

Example This example sets bit 4 (MAV) and bit 5 (ESB) in the Service Request Enable Register.

OUTPUT 707;"*SRE 48"

This example uses the parameter “48” to allow the oscilloscope to generate an SRQ
interrupt under the following conditions:
• When one or more bytes in the Output Queue set bit 4 (MAV).
• When an enabled event in the Standard Event Status Register generates a summary

bit that sets bit 5 (ESB).

Message Event Register

This register sets the MSG bit in the status byte register when an internally generated
message is written to the advisory line on the oscilloscope. The message is read using
the :SYSTEM:DSP? query. Note that messages written to the advisory line on the
oscilloscope using the :SYSTEM:DSP command does not set the MSG status bit.

Trigger Event Register

This register sets the TRG bit in the status byte register when a trigger event occurs.
The trigger event register stays set until it is cleared by reading the register with the
TER? query or by using the *CLS (clear status) command. If your application needs
to detect multiple triggers, the trigger event register must be cleared after each one.
If you are using the Service Request to interrupt a computer operation when the trigger
bit is set, you must clear the event register after each time it is set.

4-11

Status Reporting
Standard Event Status Register

Standard Event Status Register

The Standard Event Status Register (SESR) monitors the following oscilloscope
status events:
• PON - Power On
• CME - Command Error
• EXE - Execution Error
• DDE - Device Dependent Error
• QYE - Query Error
• RQC - Request Control
• OPC - Operation Complete
When one of these events occurs, the corresponding bit is set in the register.
If the corresponding bit is also enabled in the Standard Event Status Enable Register,
a summary bit (ESB) in the Status Byte Register is set.
You can read the contents of the Standard Event Status Register and clear the register
by sending the *ESR? query. The value returned is the total bit weights of all bits set
at the present time.

Example This example uses the *ESR? query to read the contents of the Standard Event Status
Register.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Turn headers off
20 OUTPUT 707;"*ESR?"
30 ENTER 707;Result !Place result in a numeric variable
40 PRINT Result !Print the result
50 End

If bit 4 (weight = 16) and bit 5 (weight = 32) are set, the program prints the sum of
the two weights.

4-12

Status Reporting
Standard Event Status Enable Register

Standard Event Status Enable Register

For any of the Standard Event Status Register bits to generate a summary bit, you
must first enable the bit. Use the *ESE (Event Status Enable) common command to
set the corresponding bit in the Standard Event Status Enable Register. Set bits are
read with the *ESE? query.

Example Suppose your application requires an interrupt whenever any type of error occurs.
The error status bits in the Standard Event Status Register are bits 2 through 5. The
sum of the decimal weights of these bits is 60. Therefore, you can enable any of these
bits to generate the summary bit by sending:
OUTPUT 707;"*ESE 60"

Whenever an error occurs, the oscilloscope sets one of these bits in the Standard Event
Status Register. Because the bits are all enabled, a summary bit is generated to set
bit 5 (ESB) in the Status Byte Register.
If bit 5 (ESB) in the Status Byte Register is enabled (via the *SRE command), a service
request interrupt (SRQ) is sent to the external computer.

Disabled Standard Event Status Register Bits Respond, but Do Not Generate
a Summary Bit

Standard Event Status Register bits that are not enabled still respond to their
corresponding conditions (that is, they are set if the corresponding event
occurs). However, because they are not enabled, they do not generate a
summary bit in the Status Byte Register.

4-13

Status Reporting
Operation Status Register

Operation Status Register

This register hosts the following bits:
• ACQ DONE bit 0
• PROC DONE bit 1
• WAIT TRIG bit 5
• MASK bit 9
• AUTO TRIG bit 11
• OVLR bit 12
The ACQ DONE done bit is set by the Acquisition Done Event Register.
The PROC DONE bit is set by the Process Done Event Register and indicates that all
functions and all math processes are done.
The WAIT TRIG bit is set by the Trigger Armed Event Register and indicates the
trigger is armed.
The MASK bit is set whenever at least one of the Mask Test Event Register bits is
enabled.
The AUTO TRIG bit is set by the Auto Trigger Event Register.
The OVLR bit is set whenever at least one of the Overload Event Register bits is
enabled.
If any of these bits are set, the OPER bit (bit 7) of the Status Byte Register is set. The
Operation Status Register is read and cleared with the OPER? query. The register
output is enabled or disabled using the mask value supplied with the OPEE command.

4-14

Status Reporting
Operation Status Enable Register

Operation Status Enable Register

For any of the Operation Status Register bits to generate a summary bit, you must first
enable the bit. Use the OPEE (Operation Event Status Enable) command to set the
corresponding bit in the Operation Status Enable Register. Set bits are read with the
OPEE? query.

Example Suppose your application requires an interrupt whenever any event occurs in the mask
test register. The error status bit in the Operation Status Register is bit 9. Therefore,
you can enable this bit to generate the summary bit by sending:
OUTPUT 707;”OPEE 512” (hex 200)

Whenever an error occurs, the oscilloscope sets this bit in the Mask Test Event
Register. Because this bit is enabled, a summary bit is generated to set bit 9 (OPER)
in the Operation Status Register.
If bit 7 (OPER) in the Status Byte Register is enabled (via the *SRE command), a
service request interrupt (SRQ) is sent to the external computer.

Disabled Operation Status Register Bits Respond, but Do Not Generate a
Summary Bit

Operation Status Register bits that are not enabled still respond to their
corresponding conditions (that is, they are set if the corresponding event
occurs). However, because they are not enabled, they do not generate a
summary bit in the Status Byte Register.

4-15

Status Reporting
Mask Test Event Register

Mask Test Event Register

This register hosts the following bits:
• Mask Test Complete bit (bit 0)
• Mask Test Fail bit (bit 1)
• Mask Low Amplitude bit (bit 2)
• Mask High Amplitude bit (bit 3)
• Mask Align Complete bit (bit 4)
• Mask Align Fail bit (bit 5)

The Mask Test Complete bit is set whenever the mask test is complete.
The Mask Test Fail bit is set whenever the mask test failed.
The Mask Low Amplitude bit is set whenever the signal is below the mask amplitude.
The Mask High Amplitude bit is set whenever the signal is above the mask amplitude.
The Mask Align Complete bit is set whenever the mask align is complete.
The Mask Align Fail bit is set whenever the mask align failed.

If any of these bits are set, the MASK bit (bit 9) of the Operation Status Register is
set. The Mask Test Event Register is read and cleared with the MTER? query. The
register output is enabled or disabled using the mask value supplied with the MTEE
command.

4-16

Status Reporting
Mask Test Event Enable Register

Mask Test Event Enable Register

For any of the Mask Test Event Register bits to generate a summary bit, you must
first enable the bit. Use the MTEE (Mask Test Event Enable) command to set the
corresponding bit in the Mask Test Event Enable Register. Set bits are read with the
MTEE? query.

Example Suppose your application requires an interrupt whenever a Mask Test Fail occurs in
the mask test register. You can enable this bit to generate the summary bit by sending:
OUTPUT 707;”MTEE 2”

Whenever an error occurs, the oscilloscope sets the MASK bit in the Operation Status
Register. Because the bits in the Operation Status Enable Register are all enabled, a
summary bit is generated to set bit 7 (OPER) in the Status Byte Register.
If bit 7 (OPER) in the Status Byte Register is enabled (via the *SRE command), a
service request interrupt (SRQ) is sent to the external computer.

Disabled Mask Test Event Register Bits Respond, but Do Not Generate a
Summary Bit

Mask Test Event Register bits that are not enabled still respond to their
corresponding conditions (that is, they are set if the corresponding event
occurs). However, because they are not enabled, they do not generate a
summary bit in the Operation Status Register.

4-17

Status Reporting
Acquisition Done Event Register

Acquisition Done Event Register

The Acquisition Done Event Register (ACQ DONE) sets bit 0 (ACQ DONE bit) in
the Operation Status Register when the oscilloscope acquisition is completed.
The ACQ DONE event register stays set until it is cleared by reading the register by
a ADER? query. If your application needs to detect multiple acquisitions, the ACQ
DONE event register must be cleared after each acquisition.

Process Done Event Register

The Process Done Event Register(PDER) sets bit 1 (PROC DONE) of the Operation
Status Register when all functions and all math operations are completed. The PDER
bit stays set until cleared by a PDER? query.

Trigger Armed Event Register

The Trigger Armed Event Register (TDER) sets bit 5 (WAIT TRIG) in the Operation
Status Register when the oscilloscope becomes armed.
The ARM event register stays set until it is cleared by reading the register with the
AER? query. If your application needs to detect multiple triggers, the ARM event
register must be cleared after each one.

Auto Trigger Event Register

The Auto Trigger Event Register (AUTO TRIG) sets bit 11 (AUTO TRIG) in the
Operation Status Register when an auto trigger event occurs. The AUTO TRIG
register stays set until it is cleared by reading the register with the ATER? query. If
the application needs to detect multiple auto trigger events, the AUT TRIG register
must be cleared after each one.

4-18

Status Reporting
Error Queue

Error Queue

As errors are detected, they are placed in an error queue. This queue is a first-in, first-
out queue. If the error queue overflows, the last error in the queue is replaced with
error -350, “Queue overflow.” Any time the queue overflows, the oldest errors remain
in the queue, and the most recent error is discarded. The length of the oscilloscope's
error queue is 30 (29 positions for the error messages, and 1 position for the “Queue
overflow” message).
The error queue is read with the :SYSTEM:ERROR? query. Executing this query
reads and removes the oldest error from the head of the queue, which opens a position
at the tail of the queue for a new error. When all the errors have been read from the
queue, subsequent error queries return 0, “No error.”
The error queue is cleared when any of these events occur:
• When the oscilloscope is powered up.
• When the oscilloscope receives the *CLS common command.
• When the last item is read from the error queue.
For more information on reading the error queue, refer to the :SYSTEM:ERROR?
query in the System Commands chapter. For a complete list of error messages, refer
to the chapter, “Error Messages.”

Output Queue

The output queue stores the oscilloscope-to-computer responses that are generated by
certain oscilloscope commands and queries. The output queue generates the Message
Available summary bit when the output queue contains one or more bytes. This
summary bit sets the MAV bit (bit 4) in the Status Byte Register. You may read the
output queue with the HP Basic ENTER statement.

4-19

Status Reporting
Message Queue

Message Queue

The message queue contains the text of the last message written to the advisory line
on the screen of the oscilloscope. The queue is read with the :SYSTEM:DSP? query.
Note that messages sent with the :SYSTEM:DSP command do not set the MSG status
bit in the Status Byte Register.

Clearing Registers and Queues

The *CLS common command clears all event registers and all queues except the
output queue. If *CLS is sent immediately following a program message terminator,
the output queue is also cleared.

4-20

Status Reporting
Clearing Registers and Queues

Figure 4-3

Status Reporting Decision Chart

5

Remote Acquisition Synchronization

5-2

Introduction

When remotely controlling an oscilloscope with SCPI commands, it is often necessary
to know when the oscilloscope has finished the previous operation and is ready for
the next SCPI command. The most common example is when an acquisition is started
using the :DIG, :RUN, or :SINGLE commands. Before a measurement result can be
queried, the acquisition must complete. Too often, fixed delays are used to accomplish
this wait, but fixed delays often use excessive time or the time may not be long enough.
A better solution is to use synchronous commands and status to know when the
oscilloscope is ready for the next request.

Programming Flow

Most remote programming follows these three general steps:

1 Setup the oscilloscope and device under test
2 Acquire a waveform
3 Retrieve results

Setting Up the Oscilloscope

Before making changes to the oscilloscope setup, it is best to make sure it is stopped
using the :STOP command followed by the *OPC? command.

NOTE: It is not necessary to use the *OPC? command, hard coded waits, or status
checking when setting up the oscilloscope.

After the oscilloscope is configured, it is ready for an acquisition.

Acquiring a Waveform

Remote Acquisition Synchronization
Retrieving Results

5-3

When acquiring a waveform, there are two possible methods used to wait for the
acquisition to complete. These methods are blocking and polling. The table below
details when each method should be chosen and why.

Table 0-1

Retrieving Results

Once the acquisition is complete, it is safe to retrieve measurements and statistics.

Acquisition Synchronization

Blocking Synchronization

Blocking Wait Polling Wait

Use When You know the
oscilloscope will trigger
based on the oscilloscope
setup and device under
test

You know the
oscilloscope may or may
not trigger based on the
oscilloscope setup and
device under test

Advantages • No need for polling
• Fast method

• Remote interface will
not timeout

• No need for device
clear if no trigger

Disadvantages • Remote interface may
timeout

• Device clear only way
to get control of
oscilloscope if there is
no trigger

• Slower method
• Required polling loop
• Required known

maximum wait time

Remote Acquisition Synchronization
Acquisition Synchronization

5-4

Use the :DIGitize command to start the acquisition. This blocks subsequent queries
until the acquisition and processing is complete.

Example // Setup
:TRIGGER:MODE EDGE
:TIMEBASE:SCALE 5e-9

//Acquire
:DIG

//Get results
:MEASURE:RISETIME?

Polling Synchronization With Timeout
This example requires a timeout value so the operation can abort if an acquisition
does not occur within the timeout period.

Example TIMEOUT = 1000ms
currentTime = 0ms

// Setup
:STOP; *OPC? // if not stopped
:ADER? // clear ADER event

// Acquire
:SINGLE

while(currentTime <= TIMEOUT)
{
 if (:ADER? == 1)
 {
 break;
 }
 else
 {
 // Use small wait to prevent excessive
 // queries to the oscilloscope
 wait (100ms)
 currentTime += 100ms
 }

Remote Acquisition Synchronization
Single Shot Device Under Test (DUT)

5-5

}

//Get results
if (currentTime < TIMEOUT)
{
 :MEASURE:RISETIME?
}

Single Shot Device Under Test (DUT)

The examples in the previous section (Acquisition Synchronization) assumed the
DUT is continually running and, therefore, the oscilloscope will have more than one
opportunity to trigger. With a single shot DUT, there is only one opportunity for the
oscilloscope to trigger so it is necessary for the oscilloscope to be armed and ready
before the DUT is enabled.

NOTE: The blocking :DIGitize command cannot be used for a single shot DUT
because once the :DIGitize command is issued, the oscilloscope is blocked from any
further commands until the acquisition is complete.

This example is the same as the previous example with the addition of checking for
the armed event status.

Example TIMEOUT = 1000ms
currentTime = 0ms

Remote Acquisition Synchronization
Averaging Acquisition Synchronization

5-6

// Setup
:STOP; *OPC? // if not stopped
:ADER? // clear ADER event

// Acquire
:SINGLE

while(AER? == 0)
{
 wait(100ms)
}

//oscilloscope is armed and ready, enable DUT here

while(currentTime <= TIMEOUT)
{
 if (:ADER? == 1)
 {
 break;
 }
 else
 {
 // Use small wait to prevent excessive
 // queries to the oscilloscope
 wait (100ms)
 currentTime += 100ms
 }
}

//Get results
if (currentTime < TIMEOUT)
{
 :MEASURE:RISETIME?
}

Averaging Acquisition Synchronization

When averaging, it is necessary to know when the average count has been reached.
Since an ADER/PDER event occurs for every acquisition in the average count, these
commands cannot be used. The :SINGle command does not average.

Remote Acquisition Synchronization
Averaging Acquisition Synchronization

5-7

If it is known that a trigger will occur, a :DIG will acquire the complete number of
averages, but if the number of averages is large, it may cause a timeout on the
connection.

The example below acquires the desired number of averages and then stops running.

Example AVERAGE_COUNT = 256

:STOP;*OPC?
:TER?
:ACQ:AVERage:COUNt AVERAGE_COUNT
:ACQ:AVERage ON
:RUN

//Assume the oscilloscope will trigger, if not put a check here

while (:WAV:COUNT? < AVERAGE_COUNT)
{
 wait(100ms)
}

:STOP;*OPC?

// Get results

Remote Acquisition Synchronization
Averaging Acquisition Synchronization

5-8

6

Programming Conventions

6-2

Programming Conventions

This chapter describes conventions used to program the Infiniium-Series
Oscilloscopes, and conventions used throughout this manual. A description
of the command tree and command tree traversal is also included.

6-3

Programming Conventions
Truncation Rule

Truncation Rule

The truncation rule is used to produce the short form (abbreviated spelling) for the
mnemonics used in the programming headers and parameter arguments.

Table 5-1 shows how the truncation rule is applied to commands.

Table 6-1 Mnemonic Truncation

Command Truncation Rule

The mnemonic is the first four characters of the keyword, unless the fourth
character is a vowel. Then the mnemonic is the first three characters of the
keyword. If the length of the keyword is four characters or less, this rule does
not apply, and the short form is the same as the long form.

Long Form Short Form How the Rule is Applied

RANGE RANG Short form is the first four characters of the keyword.

PATTERN PATT Short form is the first four characters of the keyword.

DISK DISK Short form is the same as the long form.

DELAY DEL Fourth character is a vowel; short form is the first three
characters.

6-4

Programming Conventions
The Command Tree

The Command Tree

The command tree in Figure 5-1 shows all of the commands in the Infiniium-Series
Oscilloscopes and the relationship of the commands to each other. The IEEE 488.2
common commands are not listed as part of the command tree because they do not
affect the position of the parser within the tree.
When a program message terminator (<NL>, linefeed - ASCII decimal 10) or a
leading colon (:) is sent to the oscilloscope, the parser is set to the “root” of the
command tree.

Command Types
The commands in this oscilloscope can be viewed as three types: common commands,
root level commands, and subsystem commands.
• Common commands are commands defined by IEEE 488.2 and control some

functions that are common to all IEEE 488.2 instruments. These commands are
independent of the tree and do not affect the position of the parser within the tree.
*RST is an example of a common command.

• Root level commands control many of the basic functions of the oscilloscope.
These commands reside at the root of the command tree. They can always be
parsed if they occur at the beginning of a program message or are preceded by a
colon. Unlike common commands, root level commands place the parser back at
the root of the command tree. AUTOSCALE is an example of a root level
command.

• Subsystem commands are grouped together under a common node of the command
tree, such as the TIMEBASE commands. You may select only one subsystem at
a given time. When you turn on the oscilloscope initially, the command parser is
set to the root of the command tree and no subsystem is selected.

6-5

Programming Conventions
The Command Tree

Tree Traversal Rules
Command headers are created by traversing down the command tree. A legal
command header from the command tree would be :TIMEBASE:RANGE. This is
referred to as a compound header. A compound header is a header made up of two
or more mnemonics separated by colons. The compound header contains no spaces.
The following rules apply to traversing the tree.

In the command tree, use the last mnemonic in the compound header as a reference
point (for example, RANGE). Then find the last colon above that mnemonic
(TIMEBASE:). That is the point where the parser resides. You can send any command
below this point within the current program message without sending the mnemonics
which appear above them (for example, REFERENCE).

Tree Traversal Rules

A leading colon or a program message terminator (<NL> or EOI true on the
last byte) places the parser at the root of the command tree. A leading colon is
a colon that is the first character of a program header. Executing a subsystem
command places the oscilloscope in that subsystem until a leading colon or a
program message terminator is found.

6-6

Programming Conventions
The Command Tree

Figure 5-1

Command Tree

6-7

Programming Conventions
The Command Tree

Figure 5-1 (continued)

Command Tree

6-8

Programming Conventions
The Command Tree

Figure 5-1 (continued)

Command Tree

6-9

Programming Conventions
The Command Tree

Figure 5-1 (continued)

Command Tree

6-10

Programming Conventions
The Command Tree

Figure 5-1 (continued)

Command Tree

6-11

Programming Conventions
The Command Tree

Tree Traversal Examples
The OUTPUT statements in the following examples are written using HP BASIC 5.0.
The quoted string is placed on the bus, followed by a carriage return and linefeed
(CRLF).

Example 1 Consider the following command:

OUTPUT 707;":CHANNEL1:RANGE 0.5;OFFSET 0"

The colon between CHANNEL1 and RANGE is necessary because
:CHANNEL1:RANGE is a compound command. The semicolon between the
RANGE command and the OFFSET command is required to separate the two
commands or operations. The OFFSET command does not need :CHANNEL1
preceding it because the :CHANNEL1:RANGE command sets the parser to the
CHANNEL1 node in the tree.

Example 2 Consider the following commands:

OUTPUT 707;":TIMEBASE:REFERENCE CENTER;POSITION 0.00001"

or

OUTPUT 707;":TIMEBASE:REFERENCE CENTER"
OUTPUT 707;":TIMEBASE:POSITION 0.00001"

In the first line of example 2, the “subsystem selector” is implied for the POSITION
command in the compound command.
A second way to send these commands is shown in the second part of the example.
Because the program message terminator places the parser back at the root of the
command tree, you must reselect TIMEBASE to re-enter the TIMEBASE node before
sending the POSITION command.

Example 3 Consider the following command:

OUTPUT 707;":TIMEBASE:REFERENCE CENTER;:CHANNEL1:OFFSET 0"

In this example, the leading colon before CHANNEL1 tells the parser to go back to
the root of the command tree. The parser can then recognize the
:CHANNEL1:OFFSET command and enter the correct node.

6-12

Programming Conventions
Infinity Representation

Infinity Representation

The representation for infinity for this oscilloscope is 9.99999E+37. This is also the
value returned when a measurement cannot be made.

Sequential and Overlapped Commands

IEEE 488.2 makes a distinction between sequential and overlapped commands.
Sequential commands finish their task before the execution of the next command
starts. Overlapped commands run concurrently. Commands following an overlapped
command may be started before the overlapped command is completed.

Response Generation

As defined by IEEE 488.2, query responses may be buffered for these reasons:
• When the query is parsed by the oscilloscope.
• When the computer addresses the oscilloscope to talk so that it may read the

response.
This oscilloscope buffers responses to a query when the query is parsed.

EOI

The EOI bus control line follows the IEEE 488.2 standard without exception.

7

Sample Programs

7-2

Sample Programs

Sample programs for the Infiniium-Series Oscilloscopes are shipped on a CD
ROM with the instrument. Each program demonstrates specific sets of
instructions.

This chapter shows you some of those functions, and describes the commands
being executed. Both C and BASIC examples are included.

The header file is:

• gpibdecl.h

The C examples include:

• init.c
• learnstr.c
• sicl_IO.c
• natl_IO.c

The BASIC examples include:

• init.bas
• lrn_str.bas

The sample program listings are included at the end of this chapter.

7-3

Sample Programs
Sample Program Structure

Sample Program Structure

This chapter includes segments of both the C and BASIC sample programs.
Each program includes the basic functions of initializing the interface and
oscilloscope, capturing the data, and analyzing the data.

In general, both the C and BASIC sample programs typically contain the
following fundamental segments:

Segment Description

main program Defines global variables and constants, specifies include files,
and calls various functions.

initialize Initializes the GPIB or LAN interface and oscilloscope, and
sets up the oscilloscope and the ACQuire subsystem.

acquire_data Digitizes the waveform to capture data.

auto_measurements Performs simple parametric measurements.

transfer_data Brings waveform data and voltage/timing information (the
preamble) into the computer.

The BASIC programming language can be used to set up and transfer data to
your PC. However, because of the limitations of BASIC, it is not the best
language to use when transferring large amounts of data to your PC.

7-4

Sample Programs
Sample C Programs

Sample C Programs

Segments of the sample programs “init.c” and “gen_srq.c” are shown and described
in this chapter.

init.c - Initialization

/* init. c */

/* Command Order Example. This program demonstrates the order of commands
 suggested for operation of the oscilloscope via GPIB.
 This program initializes the oscilloscope, acquires data, performs
 automatic measurements, and transfers and stores the data on the
 PC as time/voltage pairs in a comma-separated file format useful
 for spreadsheet applications. It assumes a SICL INTERFACE exists
 as 'hpib7' and an oscilloscope at address 7.
 It also requires a waveform connected to Channel 1.

 See the README file on the demo disk for development and linking information.
*/

#include <stdio.h> /* location of: printf() */
#include <stdlib.h> /* location of: atof(), atoi() */
#include "gpibdecl.h" /* prototypes, global declarations, constants */

void initialize(void); /* initialize the oscilloscope */
void acquire_data(void); /* digitize waveform */
void auto_measurements(void); /* perform built-in automatic measurements */
void transfer_data(void); /* transfers waveform data from oscilloscope to PC */
int convert_data(int, int); /* converts data to time/voltage values */
void store_csv(FILE *, int); /* stores time/voltage pairs to */
 /* comma-separated variable file format */

The include statements start the program. The file “gpibdecl.h” includes prototypes
and declarations that are necessary for the Infiniium Oscilloscope sample programs.
This segment of the sample program defines the functions, in order, that are used to
initialize the oscilloscope, digitize the data, perform measurements, transfer data from
the oscilloscope to the PC, convert the digitized data to time and voltage pairs, and
store the converted data in comma-separated variable file format.
See the following descriptions of the program segments.

7-5

Sample Programs
Sample C Programs

 init.c - Global Definitions and Main Program

/* GLOBALS */
int count;
double xorg,xinc; /* values necessary for conversion of data */
double yorg,yinc;
int Acquired_length;
char data[MAX_LENGTH]; /* data buffer */
double time_value[MAX_LENGTH]; /* time value of data */
double volts[MAX_LENGTH]; /* voltage value of data */

void main(void)
{
/* initialize interface and device sessions */
/* note: routine found in sicl_IO.c or natl_IO.c */

 if(init_IO())
 {

 /* initialize the oscilloscope and interface and set up SRQ */
 initialize();
 acquire_data(); /* capture the data */

 /* perform automated measurements on acquired data */
 auto_measurements();

 /* transfer waveform data to the PC from oscilloscope */
 transfer_data();
 close_IO(); /* close interface and device sessions */
 }
} /* end main() */

The init_IO routine initializes the oscilloscope and interface so that the oscilloscope
can capture data and perform measurements on the data. At the start of the program,
global symbols are defined which will be used to store and convert the digitized data
to time and voltage values.

7-6

Sample Programs
Sample C Programs

init.c - Initializing the Oscilloscope
/*
* Function name: initialize
* Parameters: none
* Return value: none
* Description: This routine initializes the oscilloscope for proper
* acquisition of data. The instrument is reset to a known state and the
* interface is cleared. System headers are turned off to allow faster
* throughput and immediate access to the data values requested by queries.
* The oscilloscope time base, channel, and trigger subsystems are then
* configured. Finally, the acquisition subsystem is initialized.
*/
void initialize(void)
{
 write_IO("*RST"); /* reset oscilloscope - initialize to known state */
 write_IO("*CLS"); /* clear status registers and output queue */

 write_IO(":SYSTem:HEADer OFF"); /* turn off system headers */

 /* initialize time base parameters to center reference, */
 /* 2 ms full-scale (200 us/div), and 20 us delay */
 write_IO(":TIMebase:REFerence CENTer;RANGe 2e-3;POSition 20e-6");

 /* initialize Channel1 1.6V full-scale (200 mv/div); offset-400mv */
 write_IO(":CHANnel1:RANGe 1.6;OFFSet-400e-3");

 /* initialize trigger info: channel1 waveform on positive slope at 300mv */
 write_IO(":TRIGger:EDGE:SOURce CHANnel1;SLOPe POSitive");
 write_IO(":TRIGger:LEVel CHANnel1,-0.40");

 /* initialize acquisition subsystem */
 /* Real time acquisition - no averaging; memory depth 1,000,000 */
 write_IO(":ACQuire:MODE RTIMe;AVERage OFF;POINts 1000000");

} /* end initialize() */

7-7

Sample Programs
Sample C Programs

init.c - Acquiring Data
/*
* Function name: acquire_data
* Parameters: none
* Return value: none
* Description: This routine acquires data according to the current
* instrument settings.
*/
void acquire_data(void)
{
/*
* The root level :DIGitize command is recommended for acquisition of new
* data. It will initialize data buffers, acquire new data, and ensure that
* acquisition criteria are met before acquisition of data is stopped. The
* captured data is then available for measurements, storage, or transfer
* to a PC. Note that the display is automatically turned off by the
* :DIGitize command and must be turned on to view the captured data.
*/

 write_IO(":DIGitize CHANnel1");
 write_IO(":CHANnel1:DISPlay ON"); /* turn on channel 1 display which is */
 /* turned off by the :DIGitize command */

} /* end acquire_data() */

7-8

Sample Programs
Sample C Programs

init.c - Making Automatic Measurements
/*
* Function name: auto_measurements
* Parameters: none
* Return value: none
* Description: This routine performs automatic measurements of volts
* peak-to-peak and frequency on the acquired data. It also demonstrates
* two methods of error detection when using automatic measurements.
*/

void auto_measurements(void)
{
 float frequency, vpp;
 unsigned char vpp_str[16];
 unsigned char freq_str[16];
 int bytes_read;

/*
* Error checking on automatic measurements can be done using one of two methods.
* The first method requires that you turn on results in the Measurements
* subsystem using the command :MEASure:SEND ON. When this is on, the oscilloscope
* will return the measurement and a result indicator. The result flag is zero
* if the measurement was successfully completed, otherwise a non-zero value is
* returned which indicates why the measurement failed.
*
* The second method simply requires that you check the return value of the
* measurement. Any measurement not made successfully will return with the value
* +9.999E37. This could indicate that either the measurement was unable to be
* performed, or that insufficient waveform data was available to make the
* measurement.
*/
/*
* METHOD ONE - turn on results to indicate whether the measurement completed
* successfully. Note that this requires transmission of extra data from the
* oscilloscope.
*/
 write_IO(":MEASure:SENDvalid ON"); /* turn results on */

 /* query volts peak-to-peak channel 1 */
 write_IO(":MEASure:VPP? CHANnel1");

 bytes_read = read_IO(vpp_str,16L); /* read in value and result flag */

 if (vpp_str[bytes_read-2] != '0')
 printf("Automated vpp measurement error with result %c\n",
 vpp_str[bytes_read-2]);
 else
 printf("VPP is %f\n",(float)atof(vpp_str));

7-9

Sample Programs
Sample C Programs

 write_IO(":MEASure:FREQuency? CHANnel1"); /* frequency channel 1 */

 bytes_read = read_IO(freq_str,16L); /* read in value and result flag */

 if (freq_str[bytes_read-2] != '0')
 printf("Automated frequency measurement error with result %c\n",
 freq_str[bytes_read-2]);
 else
 printf("Frequency is %f\n",(float)atof(freq_str));

/*
* METHOD TWO - perform automated measurements and error checking with
* :MEAS:RESULTS OFF
*/
 frequency =(float)0;
 vpp = (float)0;

/* turn off results */
 write_IO(":MEASure:SENDvalid OFF");

 write_IO(":MEASure:FREQuency? CHANnel1"); /* frequency channel 1 */
 bytes_read = read_IO(freq_str,16L); /* read in value and result flag */

 frequency = (float) atof(freq_str);

 if (frequency > 9.99e37)
 printf("\nFrequency could not be measured.\n");
 else
 printf("\nThe frequency of channel 1 is %f Hz.\n", frequency);

 write_IO(":MEASure:VPP? CHANnel1");
 bytes_read = read_IO(vpp_str,16L);

 vpp = (float) atof(vpp_str);

 if (vpp > 9.99e37)
 printf("Peak-to-peak voltage could not be measured.\n");
 else
 printf("The voltage peak-to-peak is %f volts.\n", vpp);

} /* end auto_measurements() */

7-10

Sample Programs
Sample C Programs

init.c - Transferring Data to the PC
/*
* Function name: transfer_data
* Parameters: none
* Return value: none
* Description: This routine transfers the waveform conversion factors and
* waveform data to the PC.
*/

void transfer_data(void)
{
 int header_length;
 char header_str[8];
 FILE *fp;
 int time_division=0;

 char xinc_str[32],xorg_str[32];
 char yinc_str[32],yorg_str[32];

 int bytes_read;

 write_IO(":WAVeform:SOURce CHANnel1"); /* waveform data source channel 1 */
 write_IO(":WAVeform:FORMat BYTE"); /* setup transfer format */

 write_IO(":WAVeform:XINCrement?"); /* request values to allow
 interpretation of raw data */
 bytes_read = read_IO(xinc_str,32L);
 xinc = atof(xinc_str);

 write_IO(":WAVeform:XORigin?");
 bytes_read = read_IO(xorg_str,32L);
 xorg = atof(xorg_str);

 write_IO(":WAVeform:YINCrement?");
 bytes_read = read_IO(yinc_str,32L);
 yinc = atof(yinc_str);

 write_IO(":WAVeform:YORigin?");
 bytes_read = read_IO(yorg_str,32L);
 yorg = atof(yorg_str);

 write_IO(":WAVeform:DATA?"); /* request waveform data */
 bytes_read = read_IO(data,1L); /* fine the # character */
 while(data[0] != '#')
 bytes_read = read_IO(data,1L); /* fine the # character */

7-11

Sample Programs
Sample C Programs

 bytes_read = read_IO(header_str,1L); /* input byte counter */
 header_length = atoi(header_str);

 /* read number of points to download */
 bytes_read = read_IO(header_str,(long)header_length);
 Acquired_length = atoi(header_str); /* number of bytes */

 bytes_read = 0;

 fp = fopen("pairs.csv","wb"); /* open file in binary mode - clear file
 if already exists */

 while((bytes_read + MAX_LENGTH) < Acquired_length)
 {
 bytes_read += read_IO(data,MAX_LENGTH); /* input waveform data */
 /* Convert data to voltage and time */
 time_division = convert_data(time_division,MAX_LENGTH);
 store_csv(fp,MAX_LENGTH); /* Store data to disk */
 }

 /* input last of waveform data */
 bytes_read = read_IO(data,(Acquired_length-bytes_read+1));
 /* Convert data to voltage and time */
 time_division = convert_data(time_division,(bytes_read-1));
 store_csv(fp,(bytes_read-1)); /* Store data to disk */

 fclose(fp); /* close file */

} /* end transfer_data() */

An example header resembles the following when the information is stripped off:
#510225

The left most “5” defines the number of digits that follow (10225). The number
“10225” is the number of points in the waveform. The information is stripped off of
the header to get the number of data bytes that need to be read from the oscilloscope.

7-12

Sample Programs
Sample C Programs

init.c - Converting Waveform Data

/*
* Function name: convert_data
* Parameters: int time_division which is the index value of the next time
* value calculated.
* int length number of voltage and time values to calculate.
* Return value: int time_division which contains the next time index.
* Description: This routine converts the waveform data to time/voltage
* information using the values that describe the waveform. These values are
* stored in global arrays for use by other routines.
*/

int convert_data(int time_division, int length)
{
 int i;

 for (i = 0; i < Acquired_length; i++)
 {
 /* calculate time info */
 time_value[i] =(time_division * xinc) + xorg;
 /* calculate volt info */
 volts[i] = (data[i] * yinc) + yorg;
 time_division++;
 }

 return time_division;
} /* end convert_data() */

The data values are returned as digitized samples (sometimes called quantization
levels or q-levels). These data values must be converted into voltage and time values.

7-13

Sample Programs
Sample C Programs

init.c - Storing Waveform Time and Voltage Information

/*
* Function name: store_csv
* Parameters: none
* Return value: none
* Description: This routine stores the time and voltage information about
* the waveform as time/voltage pairs in a comma-separated variable file
* format.
*/

void store_csv(FILE *fp, int length)
{
 int i;

 if (fp != NULL)
 {
 for (i = 0; i < length; i++)
 {
 /* write time,volt pairs to file */
 fprintf(fp,"%e,%lf\n",time_value[i],volts[i]);
 }
 }
 else
 printf("Unable to open file 'pairs.csv'\n");

} /* end store_csv() */

The time and voltage information of the waveform is stored with the time stored first,
followed by a comma, and the voltage stored second.

7-14

Sample Programs
Listings of the Sample Programs

Listings of the Sample Programs

Listings of the C sample programs in this section include:

• gpibdecl.h
• learnstr.c
• sicl_IO.c
• natl_IO.c

Listings of the BASIC sample programs in this section include:

• init.bas
• lrn_str.bas

7-15

Sample Programs
gpibdecl.h Sample Header

gpibdecl.h Sample Header

/* gpibdecl.h */

/* This file includes necessary prototypes and declarations for the
 example programs for the Agilent oscilloscope */

/* User must indicate which GPIB card (Agilent or National) is being used or
 if the LAN interface is being used.
 Also, if using a National card, indicate which version of windows
 (WIN31 or WIN95) is being used */

#define LAN /* Uncomment if using LAN interface */
#define AGILENT /* Uncomment if using LAN or Agilent interface card */
// #define NATL /* Uncomment if using National interface card */

/* #define WIN31 */ /* For National card ONLY - select windows version */
#define WIN95

#ifdef WIN95
 #include <windows.h> /* include file for Windows 95 */
#else
 #include <windecl.h> /* include file for Windows 3.1 */
#endif

#ifdef AGILENT
 #include "d:\siclnt\c\sicl.h" /* Change the path for the sicl.h location */
#else
 #include "decl-32.h"
#endif

#define CME 32
#define EXE 16
#define DDE 8
#define QYE 4

#define SRQ_BIT 64
#define MAX_LRNSTR 40000
#define MAX_LENGTH 262144
#define MAX_INT 4192

#ifdef AGILENT
 #ifdef LAN
 #define INTERFACE "lan[130.29.71.82]:hpib7,7"
 #else

7-16

Sample Programs
gpibdecl.h Sample Header

 #define DEVICE_ADDR "hpib7,7"
 #define INTERFACE "hpib7"
 #endif
#else
 #define INTERFACE "gpib0"

 #define board_index 0
 #define prim_addr 7
 #define second_addr 0
 #define timeout 13
 #define eoi_mode 1
 #define eos_mode 0
#endif

/* GLOBALS */
#ifdef AGILENT
 INST bus;
 INST scope;
#else
 int bus;
 int scope;
#endif

#define TRUE 1
#define FALSE 0

extern int srq_asserted;

/* GPIB prototypes */
void init_IO(void);
void write_IO(char*);
void write_lrnstr(char*, long);
int read_IO(char*, unsigned long);
unsigned char read_status();
void close_IO(void);
void gpiberr(void);

#ifdef AGILENT
 extern void SICLCALLBACK srq_agilent(INST);
#else
 extern int __stdcall srq_national(int, int, int, long, void*);
#endif

7-17

Sample Programs
learnstr.c Sample Program

learnstr.c Sample Program

/* learnstr.c */

/*
* This example program initializes the oscilloscope, runs autoscale to
* acquire a waveform, queries for the learnstring, and stores the learnstring
* to disk. It then allows the user to change the setup, then restores the
* original learnstring. It assumes that a waveform is attached to the
* oscilloscope.
*/

#include <stdio.h> /* location of: printf(), fopen(), fclose(),
 fwrite(),getchar */
#include "gpibdecl.h"

void initialize(void);
void store_learnstring(void);
void change_setup(void);
void get_learnstring(void);

void main(void)
{
 if(init_IO()) /* initialize device and interface */
 { /* Note: routine found in sicl_IO.c or natl_IO.c */
 /* initialize the oscilloscope and interface, and set up SRQ */
 initialize();
 store_learnstring(); /* request learnstring and store */
 change_setup(); /* request user to change setup */
 get_learnstring(); /* restore learnstring */
 close_IO(); /* close device and interface sessions */
 /* Note: routine found in sicl_IO.c or natl_IO.c */
 }
} /* end main */

7-18

Sample Programs
learnstr.c Sample Program

/*
* Function name: initialize
* Parameters: none
* Return value: none
* Description: This routine initializes the oscilloscope for proper
* acquisition of data. The instrument is reset to a known state and the
* interface is cleared. System headers are turned off to allow faster
* throughput and immediate access to the data values requested by queries.
* Autoscale is performed to acquire a waveform. The waveform is then
* digitized, and the channel display is turned on following the acquisition.
*/

void initialize(void)
{
 write_IO("*RST"); /* reset oscilloscope - initialize to known state */
 write_IO("*CLS"); /* clear status registers and output queue */

 write_IO(":SYSTem:HEADer ON"); /* turn on system headers */

 /* initialize Timebase parameters to center reference, 2 ms
 full-scale (200 us/div), and 20 us delay */
 write_IO(":TIMebase:REFerence CENTer;RANGe 5e-3;POSition 20e-6");

 /* initialize Channel1 1.6v full-scale (200 mv/div);
 offset-400mv */
 write_IO(":CHANnel1:RANGe 1.6;OFFSet-400e-3");

 /* initialize trigger info: channel1 waveform on positive slope
 at 300mv */
 write_IO(":TRIGger:EDGE:SOURce CHANnel1;SLOPe POSitive");
 write_IO(":TRIGger:LEVel CHANnel1,-0.40");

 /* initialize acquisition subsystem */
 /* Real time acquisition - no averaging; record length 4096 */
 write_IO(":ACQuire:MODE RTIMe;AVERage OFF;POINts 4096");

} /* end initialize() */

7-19

Sample Programs
learnstr.c Sample Program

/*
* Function name: store_learnstring
* Parameters: none
* Return value: none
* Description: This routine requests the system setup known as a
* learnstring. The learnstring is read from the oscilloscope and stored in a file
* called Learn2.
*/

void store_learnstring(void)
{
 FILE *fp;
 unsigned char setup[MAX_LRNSTR]={0};
 int actualcnt = 0;

 write_IO(":SYSTem:SETup?"); /* request learnstring */
 actualcnt = read_IO(setup, MAX_LRNSTR);

 fp = fopen("learn2","wb");

 if (fp != NULL)
 {
 fwrite(setup,sizeof(unsigned char),(int)actualcnt,fp);
 printf("Learn string stored in file Learn2\n");

 fclose(fp);
 }
 else
 printf("Error in file open\n");

}/* end store_learnstring */

/*
* Function name: change_setup
* Parameters: none
* Return value: none
* Description: This routine places the oscilloscope into local mode to allow the
* customer to change the system setup.
*/

void change_setup(void)
{
 printf("Please adjust setup and press ENTER to continue.\n");
 getchar();

} /* end change_setup */

7-20

Sample Programs
learnstr.c Sample Program

/*
* Function name: get_learnstring
* Parameters: none
* Return value: none
* Description: This routine retrieves the system setup known as a
* learnstring from a disk file called Learn2. It then restores
* the system setup to the oscilloscope.
*/

void get_learnstring(void)
{
 FILE *fp;
 unsigned char setup[MAX_LRNSTR];
 unsigned long count = 0;

 fp = fopen("learn2","rb");

 if (fp != NULL)
 {
 count = fread(setup,sizeof(unsigned char),MAX_LRNSTR,fp);

 fclose(fp);
 }
 write_lrnstr(setup,count); /* send learnstring */
 write_IO(":RUN");

}/* end get_learnstring */

7-21

Sample Programs
sicl_IO.c Sample Program

sicl_IO.c Sample Program

/* sicl_IO.c */

#include <stdio.h> /* location of: printf() */
#include <string.h> /* location of: strlen() */
#include "gpibdecl.h"

/* This file contains IO and initialization routines for the SICL libraries. */
/*
* Function name: init_IO
* Parameters: none
* Return value: int indicating success or failure of initialization.
* Description: This routine initializes the SICL environment. It sets up
* error handling, opens both an interface and device session, sets timeout
* values, clears the interface by pulsing IFC, and clears the instrument
* by performing a Selected Device Clear.
*/

int init_IO()
{
 ionerror(I_ERROR_EXIT); /* set-up interface error handling */

 /* open interface session for verifying SRQ line */
 bus = iopen(INTERFACE);
 if (bus == 0)
 {
 printf("Bus session invalid\n");
 return FALSE;
 }

 itimeout(bus, 20000); /* set bus timeout to 20 sec */
 iclear(bus); /* clear the interface - pulse IFC */

7-22

Sample Programs
sicl_IO.c Sample Program

#ifdef LAN
 scope = bus;
#else
 scope = iopen(DEVICE_ADDR); /* open the scope device session */
 if (scope == 0)
 {
 printf("Scope session invalid\n");
 return FALSE;
 }

 itimeout(scope, 20000); /* set device timeout to 20 sec */
 iclear(scope); /* perform Selected Device Clear on oscilloscope */
#endif

 return TRUE;
} /* end init_IO */

7-23

Sample Programs
sicl_IO.c Sample Program

/*
* Function name: write_IO
* Parameters: char *buffer which is a pointer to the character string to be
* output; unsigned long length which is the length of the string to be output
* Return value: none
* Description: This routine outputs strings to the oscilloscope device session
* using the unformatted I/O SICL commands.
*/

void write_IO(void *buffer)
{
 unsigned long actualcnt;
 unsigned long length;
 int send_end = 1;
 length = strlen(buffer);
 iwrite(scope, buffer, length, send_end, &actualcnt);

} /* end write_IO */

/*
* Function name: write_lrnstr
* Parameters: char *buffer which is a pointer to the character string to be
* output; long length which is the length of the string to be output
* Return value: none
* Description: This routine outputs a learnstring to the oscilloscope device
* session using the unformatted I/O SICL commands.
*/

void write_lrnstr(void *buffer, long length)
{
 unsigned long actualcnt;
 int send_end = 1;

 iwrite(scope, buffer,(unsigned long) length,
 send_end, &actualcnt);

} /* end write_lrnstr() */

7-24

Sample Programs
sicl_IO.c Sample Program

/*
* Function name: read_IO
* Parameters: char *buffer which is a pointer to the character string to be
* input; unsigned long length which indicates the max length of the string to
* be input
* Return value: integer which indicates the actual number of bytes read
* Description: This routine inputs strings from the oscilloscope device session
* using SICL commands.
*/

int read_IO(void *buffer,unsigned long length)
{
 int reason;
 unsigned long actualcnt;

 iread(scope,buffer,length,&reason,&actualcnt);

 return((int) actualcnt);
}

/*
* Function name: check_SRQ
* Parameters: none
* Return value: integer indicating if bus SRQ line was asserted
* Description: This routine checks for the status of SRQ on the bus and
* returns a value to indicate the status.
*/

int check_SRQ(void)
{
 int srq_asserted;

 /* check for SRQ line status */
 igpibbusstatus(bus, I_GPIB_BUS_SRQ, &srq_asserted);

 return(srq_asserted);

} /* end check_SRQ() */

7-25

Sample Programs
sicl_IO.c Sample Program

/*
* Function name: read_status
* Parameters: none
* Return value: unsigned char indicating the value of status byte
* Description: This routine reads the oscilloscope status byte and returns
* the status.
*/

unsigned char read_status(void)
{
 unsigned char statusbyte;

 /* Always read the status byte from instrument */
 /* NOTE: ireadstb uses serial poll to read status byte - this
 should clear bit 6 to allow another SRQ. */

 ireadstb(scope, &statusbyte);
 return(statusbyte);

} /* end read_status() */

/*
* Function name: close_IO
* Parameters: none
* Return value: none
* Description: This routine closes device and interface sessions for the
* SICL environment and calls the routine _siclcleanup which de-allocates
* resources used by the SICL environment.
*/

void close_IO(void)
{
 iclose(scope); /* close device session */
 iclose(bus); /* close interface session */

 _siclcleanup(); /* required for 16-bit applications */

} /* end close_SICL() */

7-26

Sample Programs
natl_IO.c Sample Program

natl_IO.c Sample Program

/* natl_IO.c */

#include <stdio.h> /* location of: printf() */
#include <string.h> /* location of: strlen() */
#include "gpibdecl.h"

/* This file contains IO and initialization routines for the NI488.2 commands. */
/*
* Function name: gpiberr
* Parameters: char* - string describing error
* Return value: none
* Description: This routine outputs error descriptions to an error file.
*/

void gpiberr(char *buffer)
{
 printf("Error string: %s\n",buffer);

} /* end gpiberr() */

/*
* Function name: init_IO
* Parameters: none
* Return value: none
* Description: This routine initializes the NI environment. It sets up error
* handling, opens both an interface and device session, sets timeout values
* clears the interface by pulsing IFC, and clears the instrument by performing
* a Selected Device Clear.
*/

void init_IO(void)
{
 bus = ibfind(INTERFACE); /* open and initialize GPIB board */
 if(ibsta & ERR)
 gpiberr("ibfind error");

 ibconfig(bus, IbcAUTOPOLL, 0); /* turn off autopolling */

 ibsic(bus); /* clear interface - pulse IFC */
 if(ibsta & ERR)
 {
 gpiberr("ibsic error");
 }

7-27

Sample Programs
natl_IO.c Sample Program

 /* open device session */
 scope = ibdev(board_index, prim_addr, second_addr, timeout,
 eoi_mode, eos_mode);
 if(ibsta & ERR)
 {
 gpiberr("ibdev error");
 }

 ibclr(scope); /* clear the device(scope) */

 if(ibsta & ERR)
 {
 gpiberr("ibclr error");
 }

} /* end init_IO */

/*
* Function name: write_IO
* Parameters: void *buffer which is a pointer to the character string
* to be output
* Return value: none
* Description: This routine outputs strings to the oscilloscope device session.
*/
void write_IO(void *buffer)
{
 long length;

 length = strlen(buffer);

 ibwrt(scope, buffer, (long) length);
 if (ibsta & ERR)
 {
 gpiberr("ibwrt error");
 }

} /* end write_IO() */

7-28

Sample Programs
natl_IO.c Sample Program

/*
* Function name: write_lrnstr
* Parameters: void *buffer which is a pointer to the character string to
* be output; length which is the length of the string to be output
* Return value: none
* Description: This routine outputs a learnstring to the oscilloscope device
* session.
*/
void write_lrnstr(void *buffer, long length)
{

 ibwrt(scope, buffer, (long) length);
 if (ibsta & ERR)
 {
 gpiberr("ibwrt error");
 }

} /* end write_lrnstr() */

/*
* Function name: read_IO
* Parameters: char *buffer which is a pointer to the character string to be
* input; unsigned long length which indicates the max length of the string
* to be input
* Return value: integer which indicates the actual number of bytes read
* Description: This routine inputs strings from the oscilloscope device session.
*/

int read_IO(void *buffer,unsigned long length)
{
 ibrd(scope, buffer,(long)length);

 return(ibcntl);

} /* end read_IO() */

7-29

Sample Programs
natl_IO.c Sample Program

/*
* Function name: read_status
* Parameters: none
* Return value: unsigned char indicating the value of status byte
* Description: This routine reads the oscilloscope status byte and returns
* the status.
*/
unsigned char read_status(void)
{
 unsigned char statusbyte;

 /* Always read the status byte from instrument */

 ibrsp(scope, &statusbyte);

 return(statusbyte);

} /* end read_status() */

/*
* Function name: close_IO
* Parameters: none
* Return value: none
* Description: This routine closes device session.
*/

void close_IO(void)
{
 ibonl(scope,0); /* close device session */

} /* end close_IO() */

7-30

Sample Programs
init.bas Sample Program

init.bas Sample Program

10 !file: init
20 !
30 !
40 ! This program demonstrates the order of commands suggested for
operation of
50 ! the oscilloscope via GPIB. This program initializes the oscilloscope,
acquires
60 ! data, performs automatic measurements, and transfers and stores the
data on the
70 ! PC as time/voltage pairs in a comma-separated file format useful for
spreadsheet
80 ! applications. It assumes an interface card at interface select code 7, an
90 ! oscilloscope at address 7, and the cal waveform connected to Channel 1.
100 !
110 !
120 !
130 COM /Io/@Scope,@Path,Interface
140 COM /Raw_data/ INTEGER Data(4095)
150 COM /Converted_data/ REAL Time(4095),Volts(4095)
160 COM /Variables/ REAL Xinc,Xorg,Yinc,Yorg
170 COM /Variables/ INTEGER Record_length
180 !
190 !
200 CALL Initialize
210 CALL Acquire_data
220 CALL Auto_msmts
230 CALL Transfer_data
240 CALL Convert_data
250 CALL Store_csv
260 CALL Close
270 END
280 !

The BASIC programming language can be used to set up and transfer data to
your PC. However, because of the limitations of BASIC, it is not the best
language to use when transferring large amounts of data to your PC.

7-31

Sample Programs
init.bas Sample Program

290
!!!
!!!!!!!!!!!!!
300 !
310 !
320 ! BEGIN SUBPROGRAMS
330 !
340
!!!
!!!!!!!!!!!!!!
350 !
360 !
370 ! Subprogram name: Initialize
380 ! Parameters: none
390 ! Return value: none
400 ! Description: This routine initializes the interface and the
oscilloscope. The instrument
410 ! is reset to a known state and the interface is cleared. System headers
420 ! are turned off to allow faster throughput and immediate access to the
430 ! data values requested by the queries. The oscilloscope time base,
440 ! channel, and trigger subsystems are then configured. Finally, the
450 ! acquisition subsystem is initialized.
460 !
470 !
480 SUB Initialize
490 COM /Io/@Scope,@Path,Interface
500 COM /Variables/ REAL Xinc,Xorg,Yinc,Yorg
510 COM /Variables/ INTEGER Record_length
520 Interface=7
530 ASSIGN @Scope TO 707
540 RESET Interface
550 CLEAR @Scope
560 OUTPUT @Scope;"*RST"
570 OUTPUT @Scope;"*CLS"
580 OUTPUT @Scope;":SYSTem:HEADer OFF"
590 !Initialize Timebase: center reference, 2 ms full-scale (200 us/div),
 20 us delay
600 OUTPUT @Scope;":TIMebase:REFerence CENTer;RANGe 2e-3;POSition 20e-6"
610 ! Initialize Channel1: 1.6V full-scale (200mv/div),-415mv offset
620 OUTPUT @Scope;":CHANnel1:RANGe 1.6;OFFSet-415e-3"
630 !Initialize Trigger: Edge trigger, channel1 source at-415mv
640 OUTPUT @Scope;":TRIGger:EDGE:SOURce CHANnel1;SLOPe POSitive"
650 OUTPUT @Scope;":TRIGger:LEVel CHANnel1,-0.415"
660 ! Initialize acquisition subsystem
665 ! Real time acquisition, Averaging off, memory depth 4096
670 OUTPUT @Scope;":ACQuire:MODE RTIMe;AVERage OFF;POINts 4096"
680 Record_length=4096
690 SUBEND

7-32

Sample Programs
init.bas Sample Program

700 !
710 !
720
!!!
!!!!!!!!!!
730 !
740 !
750 ! Subprogram name: Acquire_data
760 ! Parameters: none
770 ! Return value: none
780 ! Description: This routine acquires data according to the current
instrument
790 ! setting. It uses the root level :DIGitize command.
This command
800 ! is recommended for acquisition of new data because
it will initialize
810 ! the data buffers, acquire new data, and ensure that
acquisition
820 ! criteria are met before acquisition of data is
stopped. The captured
830 ! data is then available for measurements, storage,
or transfer to a
840 ! PC. Note that the display is automatically turned
off by the :DIGitize
850 ! command and must be turned on to view the captured data.
860 !
870 !
880 SUB Acquire_data
890 COM /Io/@Scope,@Path,Interface
900 OUTPUT @Scope;":DIGitize CHANnel1"
910 OUTPUT @Scope;":CHANnel1:DISPlay ON"
920 SUBEND
930 !
940 !
950
!!!
!!!!!!!!!!!!
960 !
970 !
980 ! Subprogram name: Auto_msmts
990 ! Parameters: none
1000 ! Return value: none

1010 ! Description: This routine performs automatic measurements of
volts peak-to-peak
1020 ! and frequency on the acquired data. It also
demonstrates two methods
1030 ! of error detection when using automatic measurements.

7-33

Sample Programs
init.bas Sample Program

1040 !
1050 !
1060 SUB Auto_msmts
1070 COM /Io/@Scope,@Path,Interface
1080 REAL Freq,Vpp
1090 DIM Vpp_str$[64]
1100 DIM Freq_str$[64]
1110 Bytes_read=0
1120 !
1130 ! Error checking on automatic measurements can be done using one of
two methods.
1140 ! The first method requires that you turn on results in the Measurement
subsystem
1150 ! using the command ":MEASure:SEND ON". When this is on, the
oscilloscope will return the
1160 ! measurement and a result indicator. The result flag is zero if
the measurement
1170 ! was successfully completed, otherwise a non-zero value is returned
which indicates
1180 ! why the measurement failed. See the Programmer's Manual for
descriptions of result
1190 ! indicators. The second method simply requires that you check the
return value of
1200 ! the measurement. Any measurement not made successfully will return
with the value
1210 ! +9.999e37. This could indicate that either the measurement was
unable to be
1220 ! performed or that insufficient waveform data was available to make
the measurement.
1230 !
1240 ! METHOD ONE
1250 !
1260 OUTPUT @Scope;":MEASure:SENDvalid ON" !turn on results
1270 OUTPUT @Scope;":MEASure:VPP? CHANnel1" !Query volts peak-to-peak
1280 ENTER @Scope;Vpp_str$
1290 Bytes_read=LEN(Vpp_str$) !Find length of string
1300 CLEAR SCREEN
1310 IF Vpp_str$[Bytes_read;1]="0" THEN !Check result value
1320 PRINT
1330 PRINT "VPP is ";VAL(Vpp_str$[1,Bytes_read-1])
1340 PRINT
1350 ELSE
1360 PRINT
1370 PRINT "Automated vpp measurement error with result
";Vpp_str$[Bytes_read;1]
1380 PRINT
1390 END IF
1400 !

7-34

Sample Programs
init.bas Sample Program

1410 !
1420 OUTPUT @Scope;":MEASure:FREQuency? CHANnel1" !Query frequency
1430 ENTER @Scope;Freq_str$
1440 Bytes_read=LEN(Freq_str$) !Find string length
1450 IF Freq_str$[Bytes_read;1]="0" THEN !Determine result value
1460 PRINT
1470 PRINT "Frequency is ";VAL(Freq_str$[1,Bytes_read-1])
1480 PRINT
1490 ELSE
1500 PRINT
1510 PRINT "Automated frequency measurement error with result
";Freq_str$[Bytes_read;1]
1520 PRINT
1530 END IF
1540 !
1550 !
1560 ! METHOD TWO
1570 !
1580 OUTPUT @Scope;":MEASure:SENDvalid OFF" !turn off results
1590 OUTPUT @Scope;":MEASure:VPP? CHANnel1" !Query volts peak-to-peak
1600 ENTER @Scope;Vpp
1610 IF Vpp<9.99E+37 THEN
1620 PRINT
1630 PRINT "VPP is ";Vpp
1640 PRINT
1650 ELSE
1660 PRINT
1670 PRINT "Automated vpp measurement error ";Vpp
1680 PRINT
1690 END IF
1700 OUTPUT @Scope;":MEASure:FREQuency? CHANnel1"
1710 ENTER @Scope;Freq
1720 IF Freq<9.99E+37 THEN
1730 PRINT
1740 PRINT "Frequency is ";Freq
1750 PRINT
1760 ELSE
1770 PRINT
1780 PRINT "Automated frequency measurement error";Freq
1790 PRINT
1800 END IF
1810 SUBEND
1820 !
1830 !
1840
!!!
!!!!!!!!!
1850 !

7-35

Sample Programs
init.bas Sample Program

1860 !
1870 ! Subprogram name: Transfer_data
1880 ! Parameters: none
1890 ! Return value: none
1900 ! Description: This routine transfers the waveform data and conversion
factors to
1910 ! to PC.
1920 !
1930 !
1940 SUB Transfer_data
1950 COM /Io/@Scope,@Path,Interface
1960 COM /Raw_data/ INTEGER Data(4095)
1970 COM /Converted_data/ REAL Time(4095),Volts(4095)
1980 COM /Variables/ REAL Xinc,Xorg,Yinc,Yorg
1990 COM /Variables/ INTEGER Record_length
2000 ! define waveform data source and format
2010 OUTPUT @Scope;":WAVeform:SOURce CHANnel1"
2020 OUTPUT @Scope;":WAVeform:FORMat WORD"
2030 ! request values needed to convert raw data to real
2040 OUTPUT @Scope;":WAVeform:XINCrement?"
2050 ENTER @Scope;Xinc
2060 OUTPUT @Scope;":WAVeform:XORigin?"
2070 ENTER @Scope;Xorg
2100 OUTPUT @Scope;":WAVeform:YINCrement?"
2110 ENTER @Scope;Yinc
2120 OUTPUT @Scope;":WAVeform:YORigin?"
2130 ENTER @Scope;Yorg
2160 !
2170 ! request data
2180 OUTPUT @Scope;":WAVeform:DATA?"
2190 ENTER @Scope USING "#,1A";First_chr$!ignore leading #
2200 ENTER @Scope USING "#,1D";Header_length !input number of bytes in
header value
2210 ENTER @Scope USING "#,"&VAL$(Header_length)&"D";Record_length !Record
length in bytes
2220 Record_length=Record_length/2 !Record length in words
2230 ENTER @Scope USING "#,W";Data(*)
2240 ENTER @Scope USING "#,A";Term$!Enter terminating character
2250 !
2260 SUBEND
2270 !
2280 !
2290
!!!
!!!!!!!!!!!
2300 !
2310 !
2320 ! Subprogram name: Convert_data

7-36

Sample Programs
init.bas Sample Program

2330 ! Parameters: none
2340 ! Return value: none
2350 ! Description: This routine converts the waveform data to time/
voltage information
2360 ! using the values Xinc, Xorg, Yinc, and Yorg used to describe
2370 ! the raw waveform data.
2380 !
2390 !
2400 SUB Convert_data
2410 COM /Io/@Scope,@Path,Interface
2420 COM /Raw_data/ INTEGER Data(4095)
2430 COM /Converted_data/ REAL Time(4095),Volts(4095)
2440 COM /Variables/ REAL Xinc,Xorg,Yinc,Yorg
2450 COM /Variables/ INTEGER Record_length
2460 !
2470 FOR I=0 TO Record_length-1
2480 Time(I)=(I-*Xinc)+Xorg
2490 Volts(I)=(Data(I)*Yinc)+Yorg
2500 NEXT I
2510 SUBEND
2520 !
2530 !
2540
!!!
!!!!!!!!!!!!!
2550 !
2560 !
2570 ! Subprogram name: Store_csv
2580 ! Parameters: none
2590 ! Return value: none
2600 ! Description: This routine stores the time and voltage information
about the waveform
2610 ! as time/voltage pairs in a comma-separated variable
file format.
2620 !
2630 !
2640 SUB Store_csv
2650 COM /Io/@Scope,@Path,Interface
2660 COM /Converted_data/ REAL Time(4095),Volts(4095)
2670 COM /Variables/ REAL Xinc,Xorg,Yinc,Yorg
2680 COM /Variables/ INTEGER Record_length
2690 !Create a file to store pairs in
2700 ON ERROR GOTO Cont
2710 PURGE "Pairs.csv"
2720 Cont: OFF ERROR
2730 CREATE "Pairs.csv",Max_length
2740 ASSIGN @Path TO "Pairs.csv";FORMAT ON
2750 !Output data to file

7-37

Sample Programs
init.bas Sample Program

2760 FOR I=0 TO Record_length-1
2770 OUTPUT @Path;Time(I),Volts(I)
2780 NEXT I
2790 SUBEND
2800 !
2810 !
2820
!!!
!!!!!!!!!!!!
2830 !
2840 !
2850 ! Subprogram name: Close
2860 ! Parameters: none
2870 ! Return value: none
2880 ! Description: This routine closes the IO paths.
2890 !
2900 !
2910 SUB Close
2920 COM /Io/@Scope,@Path,Interface
2930
2940 RESET Interface
2950 ASSIGN @Path TO *
2960 SUBEND

7-38

Sample Programs
lrn_str.bas Sample Program

lrn_str.bas Sample Program

10 !FILE: lrn_str.bas
20 !
30 !THIS PROGRAM WILL INITIALIZE THE OSCILLOSCOPE, AUTOSCALE, AND DIGITIZE
THE WAVEFORM
40 !INFORMATION. IT WILL THEN QUERY THE INSTRUMENT FOR THE LEARNSTRING AND WILL
50 !SAVE THE INFORMATION TO A FILE. THE PROGRAM WILL THEN PROMPT YOU TO CHANGE
60 !THE SETUP THEN RESTORE THE ORIGINAL LEARNSTRING CONFIGURATION. IT ASSUMES
70 !AN OSCILLOSCOPE at ADDRESS 7, GPIB INTERFACE at 7, AND THE CAL waveform
ATTACHED TO
80 !CHANNEL 1.
90 !
100 !
110 COM /Io/@Scope,@Path,Interface
120 COM /Variables/Max_length
130 CALL Initialize
140 CALL Store_lrnstr
150 CALL Change_setup
160 CALL Get_lrnstr
170 CALL Close
180 END
190 !
200 !
210
!!!
!
220 !
230 ! BEGIN SUBROUTINES
240 !
250
!!!
!
260 ! Subprogram name: Initialize
270 ! Parameters: none
280 ! Return value: none
290 ! Description: This routine initializes the path descriptions and
resets the
300 ! interface and the oscilloscope. It performs an autoscale

The BASIC programming language can be used to set up and transfer data to
your PC. However, because of the limitations of BASIC, it is not the best
language to use when transferring large amounts of data to your PC.

7-39

Sample Programs
lrn_str.bas Sample Program

on the waveform,
310 ! acquires the data on channel 1, and turns on the display.
320 ! NOTE: This routine also turns on system headers. This allows the
330 ! string ":SYSTEM:SETUP " to be returned with the
learnstring so the
340 ! return string is in the proper format.
350 !
360 SUB Initialize
370 COM /Io/@Scope,@Path,Interface
380 COM /Variables/Max_length
390 Max_length=40000
400 ASSIGN @Scope TO 707
410 Interface=7
420 RESET Interface
430 CLEAR @Scope
440 OUTPUT @Scope;"*RST"
450 OUTPUT @Scope;"*CLS"
460 OUTPUT @Scope;":SYSTem:HEADer ON"
470 OUTPUT @Scope;":AUToscale"
480 SUBEND
490 !
500 !
510
!!!
!!!!
520 !
530 !
540 ! Subprogram name: Store_lrnstr
550 ! Parameters: none
560 ! Return value: none
570 ! Description: This routine creates a file in which to store the
learnstring
580 ! configuration (Filename:Lrn_strg). It requests the learnstring
590 ! and inputs the configuration to the PC. Finally, it stores the
600 ! configuration to the file.
610 !
620 SUB Store_lrnstr
630 COM /Io/@Scope,@Path,Interface
640 COM /Variables/Max_length
650 ON ERROR GOTO Cont
660 PURGE "Lrn_strg"
670 Cont: OFF ERROR
680 CREATE BDAT "Lrn_strg",1,40000
690 DIM Setup$[40000]
700 ASSIGN @Path TO "Lrn_strg"
710 OUTPUT @Scope;":SYSTem:SETup?"
720 ENTER @Scope USING "-K";Setup$
730 OUTPUT @Path,1;Setup$

7-40

Sample Programs
lrn_str.bas Sample Program

740 CLEAR SCREEN
750 PRINT "Learn string stored in file: Lrn_strg"
760 SUBEND
770 !
780 !
790
!!!
!!!!!!!!!
800 !
810 ! Subprogram name: Change_setup
820 ! Parameters: none
830 ! Return value: none
840 ! Description: This subprogram requests that the user change the
850 ! oscilloscope setup, then press a key to continue.
860 !
870 !
880 SUB Change_setup
890 COM /Io/@Scope,@Path,Interface
900
910 PRINT
920 PRINT "Please adjust setup and press Continue to resume."
930 PAUSE
940 SUBEND
950 !
960 !
970
!!!
!!!!!!!!!
980 !
990 ! Subprogram name: Get_lrnstr
1000 ! Parameters: none
1010 ! Return value: none
1020 ! Description: This subprogram loads a learnstring from the
1030 ! file "Lrn_strg" to the oscilloscope.
1040 !
1050 !
1060 SUB Get_lrnstr
1070 COM /Io/@Scope,@Path,Interface
1080 COM /Variables/Max_length
1090 DIM Setup$[40000]
1100 ENTER @Path,1;Setup$
1110 OUTPUT @Scope USING "#,-K";Setup$
1120 OUTPUT @Scope;":RUN"
1130 SUBEND
1140 !
1150 !

7-41

Sample Programs
lrn_str.bas Sample Program

1160
!!!
!!!!!
1170 !
1180 !
1190 ! Subprogram name: Close
1200 ! Parameters: none
1210 ! Return value: none
1220 ! Description: This routine resets the interface, and closes all I/
O paths.
1230 !
1240 !
1250 !
1260 SUB Close
1270 COM /Io/@Scope,@Path,Interface
1280
1290 RESET Interface
1300 ASSIGN @Path TO *
1310 SUBEND
1320 !
1330
!!!
!!!

7-42

8

Acquire Commands

8-2

Acquire Commands

The ACQuire subsystem commands set up conditions for executing a
:DIGitize root level command to acquire waveform data. The commands in
this subsystem select the type of data, the number of averages, and the number
of data points.

These ACQuire commands and queries are implemented in the Infiniium
Oscilloscopes:

• AVERage
• AVERage:COUNt
• COMPlete
• COMPlete:STATe
• INTerpolate
• MODE
• POINts:ANALog (analog memory depth)
• POINts:DIGital? (query digital memory depth)
• POINts:AUTO
• SEGMented:COUNt
• SEGMented:INDex
• SEGMented:TTAGs
• SRATe:ANALog (analog channel sampling rate)
• SRATe:DIGital (digital channel sampling rate)
• SRATe:ANALog:AUTO
• SRATe:DIGital:AUTO

8-3

Acquire Commands
AVERage

AVERage

Command :ACQuire:AVERage {{ON|1} | {OFF|0}}

The :ACQuire:AVERage command enables or disables averaging. When ON, the
oscilloscope acquires multiple data values for each time bucket, and averages them.
When OFF, averaging is disabled. To set the number of averages, use the
:ACQuire:AVERage:COUNt command described next.
Averaging is not available in PDETect mode.
The :MTESt:AVERage command performs the same function as this command.

Example This example turns averaging on.
10 OUTPUT 707;":ACQUIRE:AVERAGE ON"
20 END

Query :ACQuire:AVERage?

The :ACQuire:AVERage? query returns the current setting for averaging.

Returned Format [:ACQuire:AVERAGE] {1|0}<NL>

Example This example places the current settings for averaging into the string variable,
Setting$, then prints the contents of the variable to the computer's screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":ACQUIRE:AVERAGE?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

8-4

Acquire Commands
AVERage:COUNt

AVERage:COUNt

Command :ACQuire:AVERage:COUNt <count_value>

The :ACQuire:[AVERage:]COUNt command sets the number of averages for the
waveforms. In the AVERage mode, the :ACQuire:AVERage:COUNt command
specifies the number of data values to be averaged for each time bucket before the
acquisition is considered complete for that time bucket.
The :MTESt:AVERage:COUNt command performs the same function as this
command.

<count_value> An integer, 2 to 65,534, specifying the number of data values to be averaged.

Example This example specifies that 16 data values must be averaged for each time bucket to
be considered complete. The number of time buckets that must be complete for the
acquisition to be considered complete is specified by the :ACQuire:COMPlete
command.
10 OUTPUT 707;":ACQUIRE:COUNT 16"
20 END

Query :ACQuire:COUNt?

The :ACQuire:COUNt? query returns the currently selected count value.

Returned Format [:ACQuire:COUNt] <value><NL>

<value> An integer, 2 to 65,534, specifying the number of data values to be averaged.

Example This example checks the currently selected count value and places that value in the
string variable, Result$. The program then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF”
20 OUTPUT 707;":ACQUIRE:AVERAGE:COUNT?"
30 ENTER 707;Result
40 PRINT Result
50 END

8-5

Acquire Commands
COMPlete

COMPlete

Command :ACQuire:COMPlete <percent>

The :ACQuire:COMPlete command specifies how many of the data point storage bins
(time buckets) in the waveform record must contain a waveform sample before a
measurement will be made. For example, if the command :ACQuire:COMPlete 60
has been sent, 60% of the storage bins in the waveform record must contain a
waveform data sample before a measurement is made.
• If :ACQuire:AVERage is set to OFF, the oscilloscope only needs one value per

time bucket for that time bucket to be considered full.
• If :ACQuire:AVERage is set to ON, each time bucket must have n hits for it to be

considered full, where n is the value set by :ACQuire:AVERage:COUNt.
Due to the nature of real time acquisition, 100% of the waveform record bins are filled
after each trigger event, and all of the previous data in the record is replaced by new
data when :ACQuire:AVERage is off. Hence, the complete mode really has no effect,
and the behavior of the oscilloscope is the same as when the completion criteria is set
to 100% (this is the same as in PDETect mode). When :ACQuire:AVERage is on, all
of the previous data in the record is replaced by new data.
The range of the :ACQuire:COMPlete command is 0 to 100 and indicates the
percentage of time buckets that must be full before the acquisition is considered
complete. If the complete value is set to 100%, all time buckets must contain data
for the acquisition to be considered complete. If the complete value is set to 0, then
one acquisition cycle will take place. Completion is set by default setup or *RST to
90%. Autoscale changes it to 100%.

<percent> An integer, 0 to 100, representing the percentage of storage bins (time buckets) that
must be full before an acquisition is considered complete.

Example This example sets the completion criteria for the next acquisition to 90%.
10 OUTPUT 707;":ACQUIRE:COMPLETE 90"
20 END

8-6

Acquire Commands
COMPlete

Query :ACQuire:COMPlete?

The :ACQuire:COMPlete? query returns the completion criteria.

Returned Format [:ACQuire:COMPlete] <percent><NL>

<percent> An integer, 0 to 100, representing the percentage of time buckets that must be full
before an acquisition is considered complete.

Example This example reads the completion criteria and places the result in the variable,
Percent. Then, it prints the content of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF”
20 OUTPUT 707;":ACQUIRE:COMPLETE?"
30 ENTER 707;Percent
40 PRINT Percent
50 END

8-7

Acquire Commands
COMPlete:STATe

COMPlete:STATe

Command :ACQuire:COMPlete:STATe {{ON | 1} | {OFF | 0}}

The :ACQuire:COMPlete:STATe command specifies the state of the
:ACQuire:COMPlete mode. This mode is used to make a tradeoff between how often
equivalent time waveforms are measured, and how much new data is included in the
waveform record when a measurement is made. This command has no effect when
the oscilloscope is in real time mode because the entire record is filled on every trigger.
However, in equivalent time mode, as few as 0 new data points will be placed in the
waveform record as the result of any given trigger event. You set the acquire mode
of the oscilloscope by using the :ACQuire:MODE command.

ON Turns the COMPlete mode on. Then you can specify the completion percent.

OFF When off, the oscilloscope makes measurements on waveforms after each acquisition
cycle, regardless of how complete they are. The waveform record is not cleared after
each measurement. Instead, previous data points will be replaced by new samples as
they are acquired.

Query :ACQuire:COMPlete:STATe?

The :ACQuire:COMPlete? query returns the state of the :ACQuire:COMPlete mode.

Use :ACQuire:COMPlete:STATe when DIGitize is Not Performing
The :ACQuire:COMPlete:STATe command is used only when the oscilloscope
is operating in equivalent time mode and a digitize operation is not being
performed. The :DIGitize command temporarily overrides the setting of this
mode and forces it to ON.

8-8

Acquire Commands
INTerpolate

INTerpolate

Command :ACQuire:INTerpolate {{ON | 1} | {OFF | 0}}

The :ACQuire:INTerpolate command turns the sin(x)/x interpolation filter on or off
when the oscilloscope is in one of the real time sampling modes.

Query :ACQuire:INTerpolate?

The :ACQuire:INTerpolate? query returns the current state of the sin(x)/x
interpolation filter control.

Returned Format [:ACQuire:INTerpolate] {1 | 0}<NL>

8-9

Acquire Commands
MODE

MODE

Command :ACQuire:MODE {ETIMe | RTIMe | PDETect |
HRESolution | SEGHres | SEGMented | SEGPdetect}

The :ACQuire:MODE command sets the acquisition mode of the oscilloscope.
Sampling mode can be Real Time Normal, Real Time Peak Detect, or Real Time
High Resolution.

ETIMe In Equivalent Time mode, the data record is acquired over multiple trigger events.

RTIMe In Real Time Normal mode, the complete data record is acquired on a single trigger
event.

PDETect In Real Time Peak Detect mode, the oscilloscope acquires all of the waveform data
points during one trigger event. The data is acquired at the fastest sample rate of the
oscilloscope regardless of the horizontal scale setting. The sampling rate control then
shows the storage rate into the channel memory rather than the sampling rate. The
storage rate determines the number of data points per data region. From each data
region, four sample points are chosen to be displayed for each time column. The four
sample points chosen from each data region are:
• the minimum voltage value sample
• the maximum voltage value sample
• a randomly selected sample
• an equally spaced sample
The number of samples per data region is calculated using the equation:

The remainder of the samples are not used for display purposes.

HRESolution In Real Time High Resolution mode, the oscilloscope acquires all the waveform data
points during one trigger event and averages them thus reducing noise and improving
voltage resolution. The data is acquired at the fastest sample rate of the oscilloscope
regardless of the horizontal scale setting. The sampling rate control then shows the
storage rate into the channel memory rather than the sampling rate. The number of
samples that are averaged together per data region is calculated using the equation

This number determines how many samples are averaged together to form the 16-bit
samples that are stored into the channel memories.

Number of Samples Sampling Rate
Storage Rate

-----------------------------------=

Number of Samples Sampling Rate
Storage Rate

-----------------------------------=

8-10

Acquire Commands
MODE

SEGMented In this sampling mode you can view waveform events that are separated by long
periods of time without capturing waveform events that are not of interest to you

SEGHres High Resolution Segmented acquisition mode.

SEGPdetect Peak detect segmented acquisition mode.
.

Example This example sets the acquisition mode to Real Time Normal.
10 OUTPUT 707;":ACQUIRE:MODE RTIME"
20 END

Query :ACQuire:MODE?

The :ACQuire:MODE? query returns the current acquisition sampling mode.

Returned Format [:ACQuire:MODE] {RTIMe | PDETect | HRESolution |
SEGMented}<NL>

Example This example places the current acquisition mode in the string variable, Mode$, then
prints the contents of the variable to the computer's screen.
10 DIM Mode$[50]!Dimension variable
20 OUTPUT 707;":ACQUIRE:MODE?"
30 ENTER 707;Mode$
40 PRINT Mode$
50 END

8-11

Acquire Commands
POINts:ANALog

POINts:ANALog

Command :ACQuire:POINts:ANALog {AUTO | <points_value>}

The :ACQuire:POINts:ANALog command sets the requested analog memory depth
for an acquisition. Before you download data from the oscilloscope to your computer,
always query the points value with the :WAVeform:POINts:ANALog? query or
:WAVeform:PREamble? query to determine the actual number of acquired points.
You can set the points value to AUTO, which allows the oscilloscope to select the
optimum memory depth and display update rate.

<points_value> An integer representing the memory depth.
The range of points available for a channel depends on the oscilloscope settings of
sampling mode, sampling rate, and trigger sweep. The following tables show the
range of memory values for the different memory options.

Table 8-1

 500M Memory Option Installed

Sampling mode and sample rate Trigger Sweep

Single Auto or Triggered

Normal, Peak Detect, and High Resolution Modes: 4 channel mode 16 to 512.5 Mpts 16 to 256.25 Mpts

Normal, Peak Detect, and High Resolution Modes: 2 channel mode 16 to1025 Mpts 16 to 612.5 Mpts

Normal and High Resolution with Averaging 16 to 2,050,00

Equivalent Time Mode 16 to 262,144 kpts

8-12

Acquire Commands
POINts:ANALog

Table 8-2

 200M Memory Option Installed

Table 8-3

 100M Memory Option Installed

50M Memory Option Installed

Sampling mode and sample rate Trigger Sweep

Single Auto or Triggered

Normal, Peak Detect, and High Resolution Modes: 4 channel mode 16 to 205 Mpts

Normal, Peak Detect, and High Resolution Modes: 2 channel mode 16 to 410 Mpts

Normal and High Resolution with Averaging 16 to 2,050,00

Equivalent Time Mode 16 to 262,144 kpts

Sampling mode and sample rate Trigger Sweep

Single Auto or Triggered

Normal, Peak Detect, and High Resolution Modes: 4 channel mode 16 to 102.5 Mpts

Normal, Peak Detect, and High Resolution Modes: 2 channel mode 16 to 205 Mpts

Normal and High Resolution with Averaging 16 to 2,050,00

Equivalent Time Mode 16 to 262,144 kpts

Sampling mode and sample rate Trigger Sweep

Single Auto or Triggered

Normal, Peak Detect, and High Resolution Modes: 4 channel mode 16 to 51.25 Mpts

Normal, Peak Detect, and High Resolution Modes: 2 channel mode 16 to 102.5 Mpts

Normal and High Resolution with Averaging 16 to 2,050,00

Equivalent Time Mode 16 to 262,144 kpts

8-13

Acquire Commands
POINts:ANALog

Table 8-4

20M Memory Option Installed

Table 8-5

10M Memory Option Installed

Sampling mode and sample rate Trigger Sweep

Single Auto or Triggered

Normal, Peak Detect, and High Resolution Modes: 4 channel mode 16 to 20.5 Mpts

Normal, Peak Detect, and High Resolution Modes: 2 channel mode 16 to 41.0 Mpts

Normal and High Resolution with Averaging 16 to 2,050,00

Equivalent Time Mode 16 to 262,144 kpts

Sampling mode and sample rate Trigger Sweep

Single Auto or Triggered

Normal, Peak Detect, and High Resolution Modes: 4 channel mode 16 to 10.25 Mpts

Normal, Peak Detect, and High Resolution Modes: 2 channel mode 16 to 20.5 Mpts

Normal and High Resolution with Averaging 16 to 2,050,00

Equivalent Time Mode 16 to 262,144 kpts

8-14

Acquire Commands
POINts:ANALog

Interaction between :ACQuire:SRATe and :ACQuire:POINts
If you assign a sample rate value with :ACQuire:SRATe or a points value using
:ACQuire:POINts the following interactions will occur. “Manual” means you are
setting a non-AUTO value for SRATe or POINts.

Example This example sets the memory depth to 500 points.
10 OUTPUT 707;":ACQUIRE:POINTS 500"
20 END

Query :ACQuire:POINts:ANALog?

The :ACQuire:POINts:ANALog? query returns the value of the analog memory depth
control.

Returned Format [:ACQuire:POINts:ANALog] <points_value><NL>

Example This example checks the current setting for memory depth and places the result in the
variable, Length. Then the program prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF”
20 OUTPUT 707;":ACQUIRE:POINTS:ANALog?"
30 ENTER 707;Length
40 PRINT Length
50 END

See Also :WAVeform:DATA?

SRATe POINts Result

AUTO Manual POINts value takes precedence (sample rate is limited)

Manual AUTO SRATe value takes precedence (memory depth is limited)

Manual Manual SRATe value takes precedence (memory depth is limited)

8-15

Acquire Commands
POINts:DIGital?

POINts:DIGital?

Query :ACQuire:POINts:DIGital

The :ACQuire:POINts:DIGital query returns the current memory depth for the digital
channels (MSO models only).

8-16

Acquire Commands
POINts:AUTO

POINts:AUTO

Command :ACQuire:POINts:AUTO {{ON | 1} |{OFF | 0}}

The :ACQuire:POINts:AUTO command enables (automatic) or disables (manual) the
automatic memory depth selection control. When enabled, the oscilloscope chooses
a memory depth that optimizes the amount of waveform data and the display update
rate. When disabled, you can select the amount of memory using the
:ACQuire:POINts command.

Example This example sets the automatic memory depth control to off.
10 OUTPUT 707;":ACQUIRE:POINTS:AUTO OFF"
20 END

Query :ACQuire:POINts:AUTO?

The :ACQuire:POINts:AUTO? query returns the automatic memory depth control
state.

Returned Format [:ACQuire:POINts:AUTO] {1 | 0}<NL>

Example This example checks the current setting for automatic memory depth control and
places the result in the variable, State. Then the program prints the contents of the
variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF”
20 OUTPUT 707;":ACQUIRE:POINTS:AUTO?"
30 ENTER 707;State
40 PRINT State
50 END

See Also :WAVeform:DATA?

8-17

Acquire Commands
SEGMented:COUNt

SEGMented:COUNt

Command :ACQuire:SEGMented:COUNt <#segments>

The :ACQuire:SEGMented:COUNt command sets the number of segments to acquire
in the segmented memory mode.

<#sements> An integer representing the number of segments to acquire.

Example This example sets the segmented memory count control to 1000.
10 OUTPUT 707;":ACQUIRE:SEGMented:COUNt 1000"
20 END

Query :ACQuire:SEGMented:COUNt?

The :ACQuire:SEGMented:COUNT? query returns the number of segments control
value.

Returned Format [:ACQuire:SEGMented:COUNt] <#segments><NL>

Example This example checks the current setting for segmented memory count control and
places the result in the variable, Segments. Then the program prints the contents of
the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF”
20 OUTPUT 707;":ACQUIRE:SEGMents:COUNt?"
30 ENTER 707;Segments
40 PRINT Segments
50 END

8-18

Acquire Commands
SEGMented:INDex

SEGMented:INDex

Command :ACQuire:SEGMented:INDex <index#>

The :ACQuire:SEGMented:INDex command sets the index number for the segment
that you want to display on screen in the segmented memory mode. If an index value
larger than the total number of acquired segments is sent, an error occurs indicating
that the data is out of range and the segment index is set to the maximum segment
number.

<index#> An integer representing the index number of the segment that you want to display.

Example This example sets the segmented memory index number control to 1000.
10 OUTPUT 707;":ACQUIRE:SEGMented:INDex 1000"
20 END

Query :ACQuire:SEGMented:INDex?

The :ACQuire:SEGMented:INDex? query returns the segmented memory index
number control value.

Returned Format [:ACQuire:SEGMented:INDex] <index#><NL>

Example This example checks the current setting for segmented memory index number control
and places the result in the variable, Index. Then the program prints the contents of
the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF”
20 OUTPUT 707;":ACQUIRE:SEGMents:INDex?"
30 ENTER 707;Index
40 PRINT Index
50 END

8-19

Acquire Commands
SEGMented:TTAGs

SEGMented:TTAGs

Command :ACQuire:SEGMented:TTAGs {{ON | 1} | {OFF | 0}}

The :ACQuire:SEGMented:TTAGs command turns the time tags feature on or off for
the segmented memory sampling mode.

Example This example turns the time tags on for segmented memory.
10 OUTPUT 707;":ACQUIRE:SEGMented:TTAGs ON"
20 END

Query :ACQuire:SEGMented:TTAGs?

The :ACQuire:SEGMented:TTAGs? query returns the segmented memory time tags
control value.

Returned Format [:ACQuire:SEGMented:TTAGs] {1 | 0}<NL>

Example This example checks the current setting for segmented memory time tags control and
places the result in the variable, timetags. Then the program prints the contents of
the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF”
20 OUTPUT 707;":ACQUIRE:SEGMents:TTAGs?"
30 ENTER 707;timetags
40 PRINT timetags
50 END

8-20

Acquire Commands
SRATe:ANALog (Analog Sample RATe)

SRATe:ANALog (Analog Sample RATe)

Command :ACQuire:SRATe:ANALog {AUTO | MAX | <rate>}

The :ACQuire:SRATe:ANALog command sets the analog acquisition sampling rate.

AUTO The AUTO rate allows the oscilloscope to select a sample rate that best accommodates
the selected memory depth and horizontal scale.

MAX The MAX rate enables the oscilloscope to select maximum available sample rate.

<rate> A real number representing the sample rate. You can send any value, but the value is
rounded to the next fastest sample rate. For a list of available sample rate values see
see “SRATe Sample Rate Tables” on page 8-22.

Interaction between :ACQuire:SRATe:ANALog and
:ACQuire:POINts:ANALog
If you assign a sample rate value with :ACQuire:SRATe:ANALog or a points value
using :ACQuire:POINts:ANALog the following interactions will occur. “Manual”
means you are setting a non-AUTO value for SRATe or POINts.

Example This example sets the sample rate to 250 MSa/s.
10 OUTPUT 707;":ACQUIRE:SRATE:ANALog 250E+6"
20 END

SRATe POINts Result

AUTO Manual POINts value takes precedence (sample rate is limited)

Manual AUTO SRATe value takes precedence (memory depth is limited)

Manual Manual SRATe value takes precedence (memory depth is limited)

8-21

Acquire Commands
SRATe:ANALog (Analog Sample RATe)

Query :ACQuire:SRATe:ANALog?

The :ACQuire:SRATe:ANALog? query returns the current analog acquisition sample
rate.

Returned Format [:ACQuire:SRATe:ANALog] {<rate>}<NL>

Example This example places the current sample rate in the string variable, Sample$, then prints
the contents of the variable to the computer's screen.
10 DIM Sample$[50]!Dimension variable
20 OUTPUT 707;":ACQUIRE:SRATE:ANALog?"
30 ENTER 707;Sample$
40 PRINT Sample$
50 END

8-22

Acquire Commands
SRATe Sample Rate Tables

SRATe Sample Rate Tables

The following tables show the range of point values.

Table 8-6

Sample Rate Values (in Sa/s)
Normal Sampling Mode

10 20 25 40 50 100 200 250 400 500 1K 2K 2.5K 4K 5K
10K 20K 25K 40K 50K 100K 200K 250K 400K 500K 1M 2M 2.5M 4M 5M
10M 20M 25M 40M 50M 100M 125M 200M 250M 400M 500M 1G 1.25G 2G 2.5G
4G 5G 10G 20G

8-23

Acquire Commands
SRATe:DIGital (Digital Channels Sample RATe)

SRATe:DIGital (Digital Channels Sample RATe)

Command :ACQuire:SRATe:DIGital {AUTO | MAX | <rate>}

The :ACQuire:SRATe:DIGital command sets the digital acquisition sampling rate.

AUTO The AUTO rate allows the oscilloscope to select a sample rate that best accommodates
the selected memory depth and horizontal scale.

MAX The MAX rate enables the oscilloscope to select maximum available sample rate.

<rate> A real number representing the digital sample rate. You can send any value, but the
value is rounded to the next fastest sample rate.

Interaction between :ACQuire:SRATe:DIGital and
:ACQuire:POINts:DIGital?
If you assign a sample rate value with :ACQuire:SRATe:DIGital, the digital memory
depth is automatically adjusted and can be seen by using the query
:ACQuire:POINts:DIGital

8-24

Acquire Commands
SRATe:DIGital (Digital Channels Sample RATe)

Query :ACQuire:SRATe:DIGital?

The :ACQuire:SRATe:DIGital? query returns the current digital acquisition sample
rate.

Returned Format [:ACQuire:SRATe:DIGital] {<rate>}<NL>

Example This example places the current digital channel sample rate in the string variable,
Sample$, then prints the contents of the variable to the computer's screen.
10 DIM Sample$[50]!Dimension variable
20 OUTPUT 707;":ACQUIRE:SRATE:DIGital?"
30 ENTER 707;Sample$
40 PRINT Sample$
50 END

8-25

Acquire Commands
SRATe:ANALog:AUTO

SRATe:ANALog:AUTO

Command :ACQuire:SRATe:ANALog:AUTO {{ON | 1} | {OFF | 0}}

The :ACQuire:SRATe:ANALog:AUTO command enables (ON) or disables (OFF)
the automatic analog sampling rate selection control. On the oscilloscope front-panel
interface, ON is equivalent to Automatic and OFF is equivalent to Manual.

Example This example changes the sampling rate to manual.
10 OUTPUT 707;":ACQUIRE:SRATE:ANALog:AUTO OFF"
20 END

Query :ACQuire:SRATe:ANALog:AUTO?

The :ACQuire:SRATe:ANALog:AUTO? query returns the current acquisition sample
rate.

Returned Format [:ACQuire:SRATe:ANALog:AUTO] {1 | 0}<NL>

Example This example places the current analog sample rate in the variable, Sample, then prints
the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF”
20 OUTPUT 707;":ACQUIRE:SRATE:ANALog:AUTO?"
30 ENTER 707;Sample
40 PRINT Sample
50 END

8-26

Acquire Commands
SRATe:DIGital:AUTO

SRATe:DIGital:AUTO

Command :ACQuire:SRATe:DIGital:AUTO {{ON | 1} | {OFF | 0}}

The :ACQuire:SRATe:DIGital:AUTO command enables (ON) or disables (OFF) the
automatic digital channel sampling rate selection control.

Example This example changes the digital channel sampling rate to manual.
10 OUTPUT 707;":ACQUIRE:SRATE:DIGital:AUTO OFF"
20 END

Query :ACQuire:SRATe:DIGital:AUTO?

The :ACQuire:SRATe:DIGital:AUTO? query returns the current digital channel
acquisition sample rate.

Returned Format [:ACQuire:SRATe:DIGital:AUTO] {1 | 0}<NL>

Example This example places the current digital channel sample rate in the variable, Sample,
then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF”
20 OUTPUT 707;":ACQUIRE:SRATE:DIGital:AUTO?"
30 ENTER 707;Sample
40 PRINT Sample
50 END

9

Bus Commands

9-2

Bus Commands

The :BUS modes and commands described in this chapter include:

• B1:TYPE
• BIT<M>
• BITS
• CLEar
• CLOCk
• DISPlay
• LABel
• READout

The BUS commands only apply to the MSO Oscilloscopes.

9-3

Bus Commands
B1:TYPE

B1:TYPE

Command :BUS:B1:TYPE <protocol>

The :BUS:B1:TYPE command sets the type of protocol being analyzed.

<protocol> {CAN | DVI | FIBRechannel | FLEXray | GEN8B10B | GENeric | HOTLink | IIC |
INFiniband | MIPI | MOST | PCIexpress | SAS | SATA | SPI | XAUI}

Example This example sets the protocol type to FLEXray.
10 Output 707;”BUS:B1:TYPE FLEXRAY”
20 END

Query :BUS:B1:TYPE?

The :BUS:B1:TYPE? query returns the name of the protocol being used.

Return format [:BUS:B1:TYPE] <protocol><NL>

This BUS command only applies to oscilloscopes with the serial data
analysis option installed.

9-4

Bus Commands
BIT<M>

BIT<M>

Command :BUS<N>:BIT<M> {ON | OFF | 1 | 0}

The :BUS<N>:BIT<M> command includes or excludes the selected bit as part of the
definition for the selected bus. If the parameter is a 1 (ON) then the bit is included
in the definition. If the parameter is a 0 (OFF) then the bit is excluded from the
definition. The digital subsystem must be enabled for this command will work. See
ENABle command in the root subsystem.

<M> An integer, 0-15.

<N> An integer, 1-4.

Example This example includes bit 1 as part of the bus 1 definition.
10 Output 707;”ENABLE DIGITAL”
20 Output 707;”BUS1:BIT1 ON”
30 END

Query :BUS<N>:BIT<M>?

The :BUS<N>:BIT<M>? query returns the value indicating whether the specified bit
is included or excluded from the specified bus definition.

Return format [:BUS<N>:BIT<M>] {1 | 0}<NL>

The BUS commands only apply to the MSO Oscilloscopes.

9-5

Bus Commands
BITS

BITS

Command :BUS<N>:BITS <channel_list>,{ON | OFF| 1 | 0}

The :BUS<N>:BITS command includes or excludes the selected bits in the channel
list in the definition of the selected bus. If the parameter is a 1 (ON) then the bits in
the channel list are included as part of the selected bus definition. If the parameter is
a 0 (OFF) then the bits in the channel list are excluded from the definition of the
selected bus. The digital subsystem must be enabled for this command will work.
See ENABle command in the root subsystem.

<N> An integer, 1- 4.

<channel_list> The channel range is from 0 to 15 in the following format.

Example This example includes bits 1, 2, 4, 5, 6, 7, 8, and 9 as part of the bus 1 definition.
10 Output 707;”ENABLE DIGITAL”
20 Output 707;”BUS1:BITS (@1,2,4:9),ON”
30 END

Query :BUS<N>:BITS?

The :BUS<N>:BITS? query returns the definition for the specified bus.

Return format [:BUS<N>:BITS] <channel_list>,{1 | 0}<NL>

The BUS commands only apply to the MSO Oscilloscopes.

(@1,5,7,9) channels 1, 5, 7, and 9 are turned on.

(@1:15) channels 1 through 15 are turned on.

(@1:5,8,14) channels 1 through 5, channel 8, and channel 14 are turned on.

The parenthesizes are part of the expression and are necessary.

9-6

Bus Commands
CLEar

CLEar

Command BUS<N>:CLEar

The :BUS<N>:CLEar command excludes all of the digital channels from the selected
bus definition.

<N> An integer, 1-4.

Example This example excludes all the digital channels from the bus 1 definition.
10 Output 707;”BUS1:CLEAR”
20 END

The BUS commands only apply to the MSO Oscilloscopes.

9-7

Bus Commands
CLOCk

CLOCk

Command :BUS<N>:CLOCk {CHANnel<O> | DIGital<M> | NONE}

The :BUS<N>:CLOCk command sets the digital or analog channel used as the clock
for decoding the bus values.

<M> An integer, 0-15.

<N> An integer, 1-4.

<O> An integer, 1-4.

Example This example sets the clock to channel 1 for bus 1.
10 Output 707;”ENABLE DIGITAL”
20 Output 707;”BUS1:CLOCK CHANNEL1”
30 END

Query :BUS<N>:CLOCK?

The :BUS<N>:CLOCk query returns the channel being used for the specified bus.

Return format [:BUS<N>:CLOCk] {CHANnel<O> | DIGital<M> | NONE}<NL>

The BUS commands only apply to the MSO Oscilloscopes.

9-8

Bus Commands
:CLOCk:SLOPe

:CLOCk:SLOPe

Command :BUS<N>:CLOCk:SLOPe {RISing | FALLing | EITHer}

The :BUS<N>:CLOCk:SLOPe command sets the clock edge used for decoding the
bus values.

<O> An integer, 1-4.

Example This example sets the clock edge to falling for bus 1.
10 Output 707;”ENABLE DIGITAL”
20 Output 707;”BUS1:CLOCk:SLOPE FALLING”
30 END

Query :BUS<N>:CLOCK:SLOPe?

The :BUS<N>:CLOCk:SLOPe query returns the clock edge being used for the
specified bus.

Return format [:BUS<N>:CLOCkSLOPe] {RISing | FALLing | EITHer}<NL>

The BUS commands only apply to the MSO Oscilloscopes.

9-9

Bus Commands
DISPlay

DISPlay

Command :BUS<N>[:DISPlay] {ON | OFF | 1 | 0}

The :BUS<N>:DISPlay command enables or disables the view of the selected bus.
The digital subsystem must be enabled before this command will work. See the
ENABle command in the root subsystem.

<N> An integer, 1- 4.

Example This example enables the viewing of bus 1.
10 Output 707;:ENABLE DIGITAL”
20 Output 707;”BUS1 ON”
30 END

Query :BUS<N>[:DISPlay]?

The :BUS<N>[:DISPlay]? query returns the display value of the selected bus.

Returned Format [:BUS<N>] {1 | 0}<NL>

The BUS commands only apply to the MSO Oscilloscopes.

9-10

Bus Commands
LABel

LABel

Command :BUS<N>:LABel <quoted_string>

The :BUS<N>:LABel command sets the bus label to the quoted string. Setting a label
for a bus will also result in the name being added to the label list.

<N> An integer, 1- 4.

<quoted_string> A series of 6 or less characters as a quoted ASCII string.

Example This example sets the bus 1 label to Data.
10 Output 707;”BUS1:LABEL ““Data”””
20 END

Query :BUS<N>:LABel?

The :BUS<N>:LABel? query returns the name of the specified bus.

Return format [:BUS<N>:LABel] <quoted_string><NL>

The BUS commands only apply to the MSO Oscilloscopes.

Label strings are 16 characters or less, and may contain any commonly used
ASCII characters. Labels with more than 16 characters are truncated to 16
characters.

9-11

Bus Commands
READout

READout

Command :BUS<N>:READout {NONE | BINary | DECimal | HEX |
OCTal | SIGNed | SYMBol

The :BUS<N>:READout command changes the format of the numbers displayed in
the bus waveform.

<N> An integer, 1-4.

Example This example sets the bus read out to decimal.
10 Output 707;”BUS1:READOUT DECIMAL
20 END

Query :BUS<N>:READout?

The :BUS<N>:READout? query returns the format of the readout control.

Return format [:BUS<N>:READout] {NONE | BINary | DECimal | HEX | OCTal | SIGNed
| SYMBol}<NL>

The BUS commands only apply to the MSO Oscilloscopes.

9-12

Bus Commands
READout

10

Channel Commands

10-2

Channel Commands

NOTE: In this section, you can specify differential and/or common mode
channels using the following convention. If you have differential or common
mode channels enabled (using either the :CHANnel<N>:DIFFerential or
:CHANnel<N>:COMMonmode commands) then:

:CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
:CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
:CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
:CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

The CHANnel subsystem commands control all vertical (Y axis) functions of
the oscilloscope. You may toggle the channel displays on and off with the
root level commands :VIEW and :BLANk, or with :CHANnel:DISPlay.

These CHANnel commands and queries are implemented:

• BWLimit
• COMMonmode
• DIFFerential
• DIFFerential:SKEW
• DISPlay
• DISPlay:AUTO
• DISPlay:OFFSet
• DISPlay:RANge
• DISPlay:SCALe
• INPut
• ISIM:APPLy
• ISIM:BANDwidth
• ISIM:BWLimit
• ISIM:CONVolve
• ISIM:DEConvolve
• ISIM:DELay
• ISIM:SPAN

10-3

Channel Commands

• ISIM:STATe
• LABel
• OFFSet
• PROBe
• PROBe:ATTenuation (only for the 1154A probe)
• PROBe:COUPling
• PROBe:EADapter (only for the 1153A, 1154A, and 1159A probes)
• PROBe:ECOupling (only for the 1153A, 1154A, and 1159A probes)
• PROBe:GAIN (only for the 1154A probe)
• PROBe:EXTernal
• PROBe:EXTernal:GAIN
• PROBe:EXTernal:OFFSet
• PROBe:EXTernal:UNITs
• PROBe:HEAD:ADD
• PROBe:HEAD:DELete
• PROBe:HEAD:SELect
• PROBe:ID?
• PROBe:SKEW
• PROBe:STYPe (only for 113xA series, 1168A, and 1169A probes)
• RANGe
• SCALe
• UNITs

10-4

Channel Commands
BWLimit

BWLimit

Command :CHANnel<N>:BWLimit {{ON | 1} | {OFF | 0}}

The :CHANnel<N>:BWLimit command controls the low-pass filter. When ON, the
bandwidth of the specified channel is limited. The bandwidth filter can be used with
either AC or DC coupling.

<N> An integer, 1 - 4

Example This example sets the internal low-pass filter t “ON” for channel 1.
10 OUTPUT 707;"CHANNEL1:BWLimit ON"
20 END

Query :CHANnel<N>:BWLimit?

The :CHANnel<N>:BWLimit? query returns the current state of the low-pass filter
for the specified channel.

Returned Format [:CHANnel<N>:BWLimit] {1 | 0}<NL>

Example This example places the current setting of the low-pass filter in the variable Limit,
then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":CHANNEL1:BWLimit?"
30 ENTER 707;Limit
40 PRINT Limit
50 END

10-5

Channel Commands
COMMonmode

COMMonmode

Command :CHANnel<N>:COMMonmode {{ON | 1} | {OFF | 0}}

The :CHANnel<N>:COMMonmode command turns on/off common mode for the
channel. Channels 2 and 4 may form a common mode channel and Channels 1 and 3
may form a common mode channel.

<N> An integer, 1 - 4

Example This example turns channel 1 common mode channel on (channel 1 + channel 3).
10 OUTPUT 707;"CHANNEL1:DIFFerential ON"
20 END

Query :CHANnel<N>:COMMonmode?

The :CHANnel<N>:COMMonmode? query returns whether the channel is in
commonmode or not.

Returned Format [:CHANnel<N>:COMMonmode] {1 | 0}<NL>

Example This example places the current common mode setting of the channel 1 display in the
variable Comm, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":CHANNEL1:COMMonmode?"
30 ENTER 707;Comm
40 PRINT Comm
50 END

10-6

Channel Commands
DIFFerential

DIFFerential

Command :CHANnel<N>:DIFFerential {{ON | 1} | {OFF | 0}}

The :CHANnel<N>:DIFFerential command turns on/off differential mode for the
channel. Channels 1 and 3 may form a differential channel and Channels 2 and 4 may
form a differential channel.

<N> An integer, 1 - 4

Example This example turns channel 1 differential on (channel 1 - channel 3).
10 OUTPUT 707;"CHANNEL1:DIFFerential ON"
20 END

Query :CHANnel<N>:DIFFerential?

The :CHANnel<N>:DIFFerential? query returns whether the channel is in differential
mode or not.

Returned Format [:CHANnel<N>:DIFFerential] {1 | 0}<NL>

Example This example places the current differential setting of the channel 1 display in the
variable Diff, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":CHANNEL1:DIFFerential?"
30 ENTER 707;Diff
40 PRINT Diff
50 END

10-7

Channel Commands
DIFFerential:SKEW

DIFFerential:SKEW

Command :CHANnel<N>:DIFFerential:SKEW <skew>

The :CHANnel<N>:DIFFerential:SKEW <skew> command sets the skew that is
applied to the differential or common mode pair of channels.

<skew> A real number for the skew value

Example This example sets the skew applied to the channel 1 - channel 3 differential channel
to 10 μs.
10 OUTPUT 707;":CHANNEL1:DIFFerential:SKEW 10E-6"
20 END

Query :CHANnel<N>:DIFFerential:SKEW?

The :CHANnel<N>:DIFFerential:SKEW? query returns the skew that is applied to
the differential or common mode pair of channels.

Returned Format [:CHANnel<N>:DIFFerential:SKEW] <skew_value><NL>

Example This example places the current skew setting of the channel 1 - channel 3 differential
channel in the variable skew, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":CHANNEL1:DIFFerential:SKEW?"
30 ENTER 707;skew
40 PRINT skew
50 END

10-8

Channel Commands
DISPlay

DISPlay

Command :CHANnel<N>:DISPlay {{ON | 1} | {OFF | 0}}

The :CHANnel<N>:DISPlay command turns the display of the specified channel on
or off.

NOTE: You can specify differential and/or common mode channels using the
following convention. If you have differential or common mode channels
enabled (using either the :CHANnel<N>:DIFFerential or
:CHANnel<N>:COMMonmode commands) then:

:CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
:CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
:CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
:CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

<N> An integer, 1 - 4

Example This example sets channel 1 display to on.
10 OUTPUT 707;"CHANNEL1:DISPLAY ON"
20 END

Query :CHANnel<N>:DISPlay?

The :CHANnel<N>:DISPlay? query returns the current display condition for the
specified channel.

Returned Format [:CHANnel<N>:DISPlay] {1 | 0}<NL>

Example This example places the current setting of the channel 1 display in the variable Display,
then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":CHANNEL1:DISPLAY?"
30 ENTER 707;Display
40 PRINT Display
50 END

10-9

Channel Commands
DISPlay:AUTO

DISPlay:AUTO

Command :CHANnel<N>:DISPlay:AUTO {{ON | 1} | {OFF | 0}}

The :CHANnel<N>:DISPlay:AUTO command sets the differential and common
mode display scale and offset to track the acquisition scale and offset.

<N> An integer, 1 - 4

NOTE: You can specify differential and/or common mode channels using the
following convention. If you have differential or common mode channels
enabled (using either the :CHANnel<N>:DIFFerential or
:CHANnel<N>:COMMonmode commands) then:

:CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
:CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
:CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
:CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

Example This example sets the channel 1 - channel 3 differential channel display scale and
offset to track the acquisition scale and offset.
10 OUTPUT 707;"CHANNEL1:DISPLAY:AUTO ON"
20 END

Query :CHANnel<N>:DISPlay:AUTO?

The :CHANnel<N>:DISPlay:AUTO? query returns whether or not the differential or
common mode display scale and offset are tracking the acquisition scale and offset.

Returned Format [:CHANnel<N>:DISPlay:AUTO] {1 | 0}<NL>

10-10

Channel Commands
DISPlay:AUTO

Example This example places whether or not the channel 1 - channel 3 differential channel
display scale and offset is tracking the acquisition scale and offset in the variable auto,
then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":CHANNEL1:DISPLAY:AUTO?"
30 ENTER 707;auto
40 PRINT auto
50 END

10-11

Channel Commands
DISPlay:OFFSet

DISPlay:OFFSet

Command :CHANnel<N>:DISPlay:OFFSet <value>

The :CHANnel<N>:DISPlay:OFFSet command sets the displayed offset of the
selected channel. Setting the display range turns off display auto.

<value> A real number for the value variable

NOTE: You can specify differential and/or common mode channels using the
following convention. If you have differential or common mode channels
enabled (using either the :CHANnel<N>:DIFFerential or
:CHANnel<N>:COMMonmode commands) then:

:CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
:CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
:CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
:CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

Example This example sets the displayed offset of channel 1 to
10 OUTPUT 707;"CHANNEL1:DISPLAY:RANGe 10e-6"
20 END

Query :CHANnel<N>:DISPlay:OFFSet?

The :CHANnel<N>:DISPlay:OFFSet? query returns the displayed offset for the
selected channel.

Returned Format [:CHANnel<N>:DISPlay:OFFSet] <value><NL>

Example This example places the displayed offset of channel 1 in the variable offset, then prints
the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":CHANNEL1:DISPLAY:OFFSet?"
30 ENTER 707;offset
40 PRINT offset
50 END

10-12

Channel Commands
DISPlay:RANGe

DISPlay:RANGe

Command :CHANnel<N>:DISPlay:RANGe <range>

The :CHANnel<N>:DISPlay:RANGe command sets the full scale vertical range of
the display of the selected channel. Setting the display range turns off display auto.

<range> A real number for the range value

NOTE: You can specify differential and/or common mode channels using the
following convention. If you have differential or common mode channels
enabled (using either the :CHANnel<N>:DIFFerential or
:CHANnel<N>:COMMonmode commands) then:

:CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
:CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
:CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
:CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

Example This example sets the display range of the display of channel 1 to
10 OUTPUT 707;"CHANNEL1:DISPLAY:RANGe 10e-6"
20 END

Query :CHANnel<N>:DISPlay:RANGe?

The :CHANnel<N>:DISPlay:RANGe? query returns the full scale vertical range of
the display for the selected channel.

Returned Format [:CHANnel<N>:DISPlay:RANGe] <range><NL>

10-13

Channel Commands
DISPlay:RANGe

Example This example places the range of channel 1 in the variable range, then prints the
contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":CHANNEL1:DISPLAY:RANGe?"
30 ENTER 707;range
40 PRINT range
50 END

10-14

Channel Commands
DISPlay:SCALe

DISPlay:SCALe

Command :CHANnel<N>:DISPlay:SCALe <scale>

The :CHANnel<N>:DISPlay:SCALe command sets the displayed scale of the
selected channel per division. Setting the display range turns off display auto.

<scale> A real number for the scale value

NOTE: You can specify differential and/or common mode channels using the
following convention. If you have differential or common mode channels
enabled (using either the :CHANnel<N>:DIFFerential or
:CHANnel<N>:COMMonmode commands) then:

:CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
:CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
:CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
:CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

Example This example sets the display scale of channel 1 per division to
10 OUTPUT 707;"CHANNEL1:DISPLAY:SCALe 10e-6"
20 END

Query :CHANnel<N>:DISPlay:SCALe?

The :CHANnel<N>:DISPlay:SCALe? query returns the displayed scale of the
selected channel per division.

Returned Format [:CHANnel<N>:DISPlay:SCALe] <scale><NL>

10-15

Channel Commands
DISPlay:SCALe

Example This example places the display scale of channel 1 in the variable scale, then prints
the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":CHANNEL1:DISPLAY:SCALe?"
30 ENTER 707;scale
40 PRINT scale
50 END

10-16

Channel Commands
INPut

INPut

Command :CHANnel<N>:INPut <parameter>

The :CHANnel<N>:INPut command selects the input coupling, impedance, and
LF/HF reject for the specified channel. The coupling for each channel can be AC,
DC, DC50, or DCFifty when no probe is attached. If you have an 1153A probe
attached, the valid parameters are DC, LFR1, and LFR2 (low-frequency reject).

<N> An integer, 1 - 4.

<parameter> The parameters available in the command for Infiniium are:
• DC: DC coupling, 1 MOhm impedance
• DC50 | DCFifty: DC coupling, 50 Ohm impedance
• AC: AC coupling, 1 MOhm impedance
• LFR1 | LFR2: AC 1 MOhm input impedance

Example This example sets the channel 1 input to DC50.
10 OUTPUT 707;":CHANNEL1:INPut DC50"
20 END

Query :CHANnel<N>:INPut?

The :CHANnel<N>:INPut? query returns the selected channel input parameter.

Returned Format [CHANnel<N>:INPut] <parameter><NL>

Example This example puts the current input for channel 1 in the string variable, Input$. The
program then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":CHANNEL1:INPUT?
30 ENTER 707;Input$
40 PRINT Input$
50 END

10-17

Channel Commands
ISIM:APPLy

ISIM:APPLy

Command :CHANnel<N>:ISIM:APPLy <transfer_funct_file>

The :CHANnel<N>:ISIM:APPLy command applies a pre-computed transfer function
to the waveform. If InfiniiSim is in 2 port mode, the file must be a .tf2 file. If in 4 port
mode, the file must be a .tf4 file. Use the ISIM:STATe command to enable InfiniiSim
before issuing the APPLy command.

NOTE: You can specify differential and/or common mode channels using the
following convention. If you have differential or common mode channels
enabled (using either the :CHANnel<N>:DIFFerential or
:CHANnel<N>:COMMonmode commands) then:

:CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
:CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
:CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
:CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

<N> An integer, 1 - 4.

<transfer_funct
_file>

The .tf2 file name (if in 2 port mode) or .tf4 file (if in 4 port mode).

Example This example applies the example.tf4 file to the waveform on channel 1.
10 OUTPUT 707;":CHANNEL1:ISIM:APPLy example.tf4"
20 END

Query :CHANnel<N>:ISIM:APPLy?

The :CHANnel<N>:ISIM:APPLy? query returns the currently selected function file
name when 2 port or 4 port mode is enabled.

Returned Format [CHANnel<N>:ISIM:APPLy] <file_name><NL>

This CHANnel command only applies if you have purchased the
InfiniiSim software application.

10-18

Channel Commands
ISIM:APPLy

Example This example puts the current transfer function file name in the variable file. The
program then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":CHANNEL1:ISIM:APPLy?
30 ENTER 707;file
40 PRINT file
50 END

10-19

Channel Commands
ISIM:BANDwidth

ISIM:BANDwidth

Command :CHANnel<N>:ISIM:BANDwidth <bw_value>

The :CHANnel<N>:ISIM:BANDwidth command sets the Bandwidth Limit field in
the InfiniiSim GUI to a desired value (sets the bandwidth limit cutoff frequency). The
CHANnel<N>:ISIM:BWLimit command turns this feature on or off. Please refer to
the InfiniiSim User’s Guide on your oscilloscope or on Agilent.com for more
explanation regarding this field.

NOTE: You can specify differential and/or common mode channels using the
following convention. If you have differential or common mode channels
enabled (using either the :CHANnel<N>:DIFFerential or
:CHANnel<N>:COMMonmode commands) then:

:CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
:CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
:CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
:CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

<N> An integer, 1 - 4.

<bw_value> The maximum value is the sample rate / 2. The minimum value is 1000 Hz.

Example This example sets the channel 1 input bandwidth limit cutoff frequency to 2 GHz.
10 OUTPUT 707;":CHANNEL1:ISIM:BANDwidth 2e9"
20 END

Query :CHANnel<N>:ISIM:BANDwidth?

The :CHANnel<N>:ISIM:BANDwidth? query returns the selected channel input’s
bandwidth limit cutoff frequency.

Returned Format [CHANnel<N>:ISIM:BANDwidth] <parameter><NL>

This CHANnel command only applies if you have purchased the
InfiniiSim software application.

10-20

Channel Commands
ISIM:BANDwidth

Example This example puts the current input for channel 1 in the string variable, bwlimit. The
program then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":CHANNEL1:ISIM:BANDwidth?
30 ENTER 707;bwlimit
40 PRINT bwlimit
50 END

10-21

Channel Commands
ISIM:BWLimit

ISIM:BWLimit

Command :CHANnel<N>:ISIM:BWLimit {{ON | 1} | {OFF | 0}}

The :CHANnel<N>:ISIM:BWLimit command activates or deactivates the
Bandwidth Limit field in the InfiniiSim GUI. This field sets the bandwidth limit cutoff
frequency. The CHANnel<N>:ISIM:BANDwidth command sets the value to be used
when this field is activated. Please refer to the InfiniiSim User’s Guide on your
oscilloscope or on Agilent.com for more explanation regarding this field.

NOTE: You can specify differential and/or common mode channels using the
following convention. If you have differential or common mode channels
enabled (using either the :CHANnel<N>:DIFFerential or
:CHANnel<N>:COMMonmode commands) then:

:CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
:CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
:CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
:CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

<N> An integer, 1 - 4.

Example This example turns on the InfiniiSim bandwidth limit feature for channel 1.
10 OUTPUT 707;":CHANNEL1:ISIM:BWLimit ON"
20 END

Query :CHANnel<N>:ISIM:BWLimit?

The :CHANnel<N>:ISIM:BWLimit? query returns the current state of the
corresponding channel’s InfiniiSim bandwidth limiting feature.

Returned Format [CHANnel<N>:ISIM:BWLimit] {1 | 0}<NL>

This CHANnel command only applies if you have purchased the
InfiniiSim software application.

10-22

Channel Commands
ISIM:BWLimit

Example This example puts the current InfiniiSim bandwidth limit state for channel 1 in the
string variable, limit. The program then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":CHANNEL1:ISIM:BWLimit?
30 ENTER 707;limit
40 PRINT limit
50 END

10-23

Channel Commands
ISIM:CONVolve

ISIM:CONVolve

Command :CHANnel<N>:ISIM:CONVolve <s_parameter_file>, {OFF
| ON}

The :CHANnel<N>:ISIM:CONVolve command convolves the indicated S-parameter
file with the waveform. This command only uses a single S21 component block. If a
.s4p file is indicated, ports 1 and 2 are used assuming a 1-2, 3-4 port numbering for
4 port files. Optionally, include ON to flip the port numbering when reading the
s-parameter file.

NOTE: You can specify differential and/or common mode channels using the
following convention. If you have differential or common mode channels
enabled (using either the :CHANnel<N>:DIFFerential or
:CHANnel<N>:COMMonmode commands) then:

:CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
:CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
:CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
:CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

<N> An integer, 1 - 4.

<s_parameter_
file>

The name of the s-parameter file.

Example This example convolves the s-parameter file example.s2p with the waveform on
channel 1.
10 OUTPUT 707;":CHANNEL1:ISIM:CONVolve example.s2p"
20 END

This CHANnel command only applies if you have purchased the
InfiniiSim software application.

10-24

Channel Commands
ISIM:DEConvolve

ISIM:DEConvolve

Command :CHANnel<N>:ISIM:DEConvolve <s_parameter_file>,
{OFF | ON}

The :CHANnel<N>:ISIM:DEConvolve command deconvolves the indicated
S-parameter file with the waveform. This command only uses a single S21 component
block. If a .s4p file is indicated, ports 1 and 2 are used assuming a 1-2, 3-4 port
numbering for 4 port files. Optionally, include ON to flip the port numbering when
reading the s-parameter file.

NOTE: You can specify differential and/or common mode channels using the
following convention. If you have differential or common mode channels
enabled (using either the :CHANnel<N>:DIFFerential or
:CHANnel<N>:COMMonmode commands) then:

:CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
:CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
:CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
:CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

<N> An integer, 1 - 4.

<s_parameter_
file>

The name of the s-parameter file.

Example This example deconvolves the s-parameter file example.s2p with the waveform on
channel 1.
10 OUTPUT 707;":CHANNEL1:ISIM:DEConvolve example.s2p"
20 END

This CHANnel command only applies if you have purchased the
InfiniiSim software application.

10-25

Channel Commands
ISIM:DELay

ISIM:DELay

Command :CHANnel<N>:ISIM:DElay {OFF | ON}

If the :CHANnel<N>:ISIM:DELay command is turned on, the transfer function delay
is included in the resultant waveform. Consult the InfiniiSim User’s Guide in the
Manuals section of the GUI help system for more information.

NOTE: You can specify differential and/or common mode channels using the
following convention. If you have differential or common mode channels
enabled (using either the :CHANnel<N>:DIFFerential or
:CHANnel<N>:COMMonmode commands) then:

:CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
:CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
:CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
:CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

<N> An integer, 1 - 4.

Example This example applies the transfer function delay in the resultant waveform.
10 OUTPUT 707;":CHANNEL1:ISIM:DELay ON"
20 END

Query :CHANnel<N>:ISIM:DELay?

The :CHANnel<N>:ISIM:DELay? query returns the current state of the transfer
function delay feature on the corresponding input channel.

Returned Format [CHANnel<N>:ISIM:DELay] {OFF | ON}<NL>

Example This example puts whether or not the transfer function delay is included in the resultant
waveform for channel 1 in the string variable, delay. The program then prints the
contents of the variable to the computer's screen.

This CHANnel command only applies if you have purchased the
InfiniiSim software application.

10-26

Channel Commands
ISIM:DELay

10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":CHANNEL1:ISIM:DELay?
30 ENTER 707;delay
40 PRINT delay
50 END

10-27

Channel Commands
ISIM:SPAN

ISIM:SPAN

Command :CHANnel<N>:ISIM:SPAN <max_time_span>

The :CHANnel<N>:ISIM:SPAN command sets the maximum time span control in
the InfiniiSim Setup dialog box.

NOTE: You can specify differential and/or common mode channels using the
following convention. If you have differential or common mode channels
enabled (using either the :CHANnel<N>:DIFFerential or
:CHANnel<N>:COMMonmode commands) then:

:CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
:CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
:CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
:CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

<N> An integer, 1 - 4.

<max_time_span> A real number.

Example This example sets the maximum time span control to 100e-9.
10 OUTPUT 707;":CHANNEL1:ISIM:SPAN 100e-9"
20 END

Query :CHANnel<N>:ISIM:SPAN?

The :CHANnel<N>:ISIM:SPAN? query returns the current InfiniiSim filter
maximum time span on the corresponding input channel.

Returned Format [CHANnel<N>:ISIM:SPAN] <max_time_span><NL>

Example This example puts the InfiniiSim filter’s maximum time span value in the variable
tspan. The program then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"

This CHANnel command only applies if you have purchased the
InfiniiSim software application.

10-28

Channel Commands
ISIM:SPAN

20 OUTPUT 707;":CHANNEL1:ISIM:SPAN?
30 ENTER 707;tspan
40 PRINT tspan
50 END

10-29

Channel Commands
ISIM:STATe

ISIM:STATe

Command :CHANnel<N>:ISIM:STATe {OFF | PORT2 | PORT4}

The :CHANnel<N>:ISIM:STATe command turns InfiniiSim on or off and sets
whether 2 port or 4 port mode is being used (if it is turned on).
NOTE: You can specify differential and/or common mode channels using the
following convention. If you have differential or common mode channels
enabled (using either the :CHANnel<N>:DIFFerential or
:CHANnel<N>:COMMonmode commands) then:

:CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
:CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
:CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
:CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

<N> An integer, 1 - 4.

Example This example turns on InfiniiSim for channel 1 and puts it in 2 port mode.
10 OUTPUT 707;":CHANNEL1:ISIM:STATe PORT2"
20 END

Query :CHANnel<N>:ISIM:STATe?

The :CHANnel<N>:ISIM:STATe? query returns the current state of InfiniiSim on the
corresponding input channel.

Returned Format [CHANnel<N>:ISIM:STATe] {OFF | PORT2 | PORT4}<NL>

Example This example puts the current InfiniiSim state for channel 1 in the string variable,
mode. The program then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":CHANNEL1:ISIM:STATe?
30 ENTER 707;mode

This CHANnel command only applies if you have purchased the
InfiniiSim software application.

10-30

Channel Commands
ISIM:STATe

40 PRINT mode
50 END

10-31

Channel Commands
LABel

LABel

Command :CHANnel<N>:LABel <string>

The :CHANnel<N>:LABel command sets the channel label
to the quoted string.

NOTE: You can specify differential and/or common mode channels using the
following convention. If you have differential or common mode channels
enabled (using either the :CHANnel<N>:DIFFerential or
:CHANnel<N>:COMMonmode commands) then:

:CHANnel1 would refer to the Channel 1 - Channel 3 differential channel
:CHANnel2 would refer to the Channel 2 - Channel 4 differential channel
:CHANnel3 would refer to the Channel 1 + Channel 3 common mode channel
:CHANnel4 would refer to the Channel 2 + Channel 4 common mode channel

<N> An integer, 1 - 4.

<string> A series of 16 or less characters as a quoted ASCII string

Example This example sets the channel 1 label to Data.
10 OUTPUT 707;":CHANNEL1:LABel ““Data””"
20 END

Query :CHANnel<N>:LABel?

The :CHANnel<N>:LABel? query returns the label of the specified channel.

Returned Format [CHANnel<N>:LABel] <string><NL>

10-32

Channel Commands
OFFSet

OFFSet

Command :CHANnel<N>:OFFSet <offset_value>

The :CHANnel<N>:OFFSet command sets the vertical value that is represented at
the center of the display for the selected channel. Offset parameters are probe and
vertical scale dependent.

<N> An integer, 1 - 4

<offset_value> A real number for the offset value at center screen. Usually expressed in volts, but it
can also be in other measurement units, such as amperes, if you have specified other
units using the :CHANnel<N>:UNITs command or the
CHANnel<N>:PROBe:EXTernal:UNITs command.

Example This example sets the offset for channel 1 to 0.125 in the current measurement units:
10 OUTPUT 707;":CHANNEL1:OFFSET 125E-3"
20 END

Query :CHANnel<N>:OFFSet?

The :CHANnel<N>:OFFSet? query returns the current offset value for the specified
channel.

Returned Format [CHANnel<N>:OFFSet] <offset_value><NL>

Example This example places the offset value of the specified channel in the string variable,
Offset$, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;"CHANNEL1:OFFSET?"
30 ENTER 707;Offset
40 PRINT Offset
50 END

10-33

Channel Commands
PROBe

PROBe

Command :CHANnel<N>:PROBe <attenuation_factor>[,{RATio |
DECibel}]

The :CHANnel<N>:PROBe command sets the probe attenuation factor and the units
(ratio or decibels) for the probe attenuation factor for a user-defined probe.
The DECibel and RATio parameters also set the “mode” for the probe attenuation.
These parameters, along with attenuation factor, determine the scaling of the display
and affect automatic measurements and trigger levels.
This mode also determines the units (ratio or decibels) that may be used for a
subsequent command.

<N> An integer, 1-4

<attenuation
_factor>

A real number from 0.0001 to 1000 for the RATio attenuation units or from −80 dB
to 60 dB for the DECibel attenuation units.

Example This example sets the probe attenuation factor for a 10:1 probe on channel 1 in ratio
units.
10 OUTPUT 707;":CHANNEL1:PROBE 10,RAT"
20 END

10-34

Channel Commands
PROBe

Query :CHANnel<N>:PROBe?

The :CHANnel<N>:PROBe? query returns the current probe attenuation setting and
units for the selected channel.

Returned Format [:CHANnel<N>:PROBe] <attenuation>,{RATio | DECibel}<NL>

Example This example places the current attenuation setting for channel 1 in the string variable,
Atten$, then the program prints the contents.
10 DIM Atten$[50]!Dimension variable
20 OUTPUT 707;":CHANNEL1:PROBE?
30 ENTER 707;Atten$
40 PRINT Atten$
50 END

If you use a string variable, the query returns the attenuation value and the factor
(decibel or ratio). If you use an integer variable, the query returns the attenuation
value. You must then read the attenuation units into a string variable.

10-35

Channel Commands
PROBe:ATTenuation

PROBe:ATTenuation

Command :CHANnel<N>:PROBe:ATTenuation {DIV1 | DIV10}

The :CHANnel<N>:PROBe:ATTenuation command sets the 1154A probe’s input
amplifier attenuation. If the 1154A probe is not connected to the channel you will get
a settings conflict error.

<N> An integer, 1 - 4

Example This example sets the probe attenuation for channel 1 to divide by 10.
10 OUTPUT 707;":CHANNEL1:PROBE:ATTENUATION DIV10"
20 END

Query :CHANnel<N>:PROBe:ATTenuation?

The :CHANnel<N>:PROBe:ATTenuation? query returns the current 1154A probe
input amplifier attenuation setting for the selected channel.

Returned Format [:CHANnel<N>:PROBe:ATTenuation] {DIV1 | DIV10}<NL>

This command is only valid for the 1154A probe.

10-36

Channel Commands
PROBe:COUPling

PROBe:COUPling

Command :CHANnel<N>:PROBe:COUPling {DC | AC}

The :CHANnel<N>:PROBe:COUPling command sets the coupling to either AC or
DC.

<N> An integer, 1 - 4

Example This example sets the probe coupling for channel 1 to AC.
10 OUTPUT 707;":CHANNEL1:PROBE:COUPling AC"
20 END

Query :CHANnel<N>:PROBe:COUPling?

The :CHANnel<N>:PROBe:COUPling? query returns the current probe coupling
setting for the selected channel.

Returned Format [:CHANnel<N>:PROBe:COUPling] {DC | AC}<NL>

10-37

Channel Commands
PROBe:EADapter

PROBe:EADapter

Command :CHANnel<N>:PROBe:EADapter {NONE | DIV10 |
DIV20 | DIV100}

The :CHANnel<N>:PROBe:EADapter command sets the probe external adapter
control. The 1153A, 1154A, and 1159A probes have external adapters that you can
attach to the end of your probe. When you attach one of these adapters, you should
use the EADapter command to set the external adapter control to match the adapter
connected to your probe as follows.

If an 1153A, 1154A, or 1159A probe is not connected to the channel you will get a
settings conflict error.

<N> An integer, 1 - 4

Example This example sets the external adapter for channel 1 to divide by 10:
10 OUTPUT 707;":CHANNEL1:PROBE:EADAPTER DIV10"
20 END

This command is valid only for the 1153A, 1154A, and 1159A probes.

Parameter Description

NONE Use this setting when there is no adapter
connected to the end of your probe.

DIV10 Use this setting when you have a divide by
10 adapter connected to the end of your
probe.

DIV20 Use this setting when you have a divide by
20 adapter connected to the end of your
probe. (1159A)

DIV100 Use this setting when you have a divide by
100 adapter connected to the end of your
probe.(1153A only)

10-38

Channel Commands
PROBe:EADapter

Query :CHANnel<N>:PROBe:EADapter?

The :CHANnel<N>:PROBe:EADapter? query returns the current external adapter
value for the specified channel.

Returned Format [CHANnel<N>:PROBe:EDApter] {NONE | DIV10 | DIV20 | DIV100}<NL>

Example This example places the external adapter value of the specified channel in the string
variable, Adapter$, then prints the contents of the variable to the computer's screen.
10 DIM Adapter$[50]!Dimension variable
20 OUTPUT 707;":CHANNEL1:PROBE:EADAPTER?
30 ENTER 707;Adapter$
40 PRINT Adapter$
50 END

10-39

Channel Commands
PROBe:ECOupling

PROBe:ECOupling

Command :CHANnel<N>:PROBe:ECOupling {NONE | AC}

The :CHANnel<N>:PROBe:ECOupling command sets the probe external coupling
adapter control. The 1154A and 1159A probes have external coupling adapters that
you can attach to the end of your probe. When you attach one of these adapters, you
should use the ECOupling command to set the external coupling adapter control to
match the adapter connected to your probe as follows.

If an 1153A, 1154A, or 1159A probe is not connected to the channel you will get a
settings conflict error.

<N> An integer, 1 - 4

Example This example sets the external coupling adapter for channel 1 to ac:
10 OUTPUT 707;":CHANNEL1:PROBE:ECOUPLING AC"
20 END

This command is valid only for the 1153A, 1154A, and 1159A probes.

Parameter Description

NONE Use this setting when there is no adapter
connected to the end of your probe.

AC Use this setting when you have an ac
coupling adapter connected to the end of
your probe.

10-40

Channel Commands
PROBe:ECOupling

Query :CHANnel<N>:PROBe:ECOupling?

The :CHANnel<N>:PROBe:ECoupling? query returns the current external adapter
coupling value for the specified channel.

Returned Format [CHANnel<N>:PROBe:ECOupling] {NONE | AC}<NL>

Example This example places the external coupling adapter value of the specified channel in
the string variable, Adapter$, then prints the contents of the variable to the computer's
screen.
10 DIM Adapter$[50]!Dimension variable
20 OUTPUT 707;":CHANNEL1:PROBE:ECOUPLING?
30 ENTER 707;Adapter$
40 PRINT Adapter$
50 END

10-41

Channel Commands
PROBe:EXTernal

PROBe:EXTernal

Command :CHANnel<N>:PROBe:EXTernal {{ON | 1} | {OFF | 0}}

The :CHANnel<N>:PROBe:EXTernal command sets the external probe mode to on
or off.

<N> An integer, 1 - 4

Example This example sets channel 1 external probe mode to on.
10 OUTPUT 707;"CHANNEL1:PROBE:EXTERNAL ON"
20 END

Query :CHANnel<N>:PROBe:EXTernal?

The :CHANnel<N>:PROBe:EXTernal? query returns the current external probe
mode for the specified channel.

Returned Format [:CHANnel<N>:PROBe:EXTernal] {1 | 0}<NL>

Example This example places the current setting of the external probe mode on channel 1 in
the variable Mode, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":CHANNEL1:PROBE:EXTERNAL?"
30 ENTER 707;Mode
40 PRINT Mode
50 END

10-42

Channel Commands
PROBe:EXTernal:GAIN

PROBe:EXTernal:GAIN

Command :CHANnel<N>:PROBe:EXTernal:GAIN
<gain_factor>[,{RATio | DECibel}]

The :CHANnel<N>:PROBe:EXTernal:GAIN command sets the probe external
scaling gain factor and, optionally, the units for the probe gain factor. The reference
factors that are used for scaling the display are changed with this command, and affect
automatic measurements and trigger levels.
The RATio or DECibel also sets the mode for the probe attenuation and also
determines the units that may be used for a subsequent command. For example, if
you select RATio mode, then the attenuation factor must be given in ratio gain units.
In DECibel mode, you can specify the units for the argument as “dB”.

<N> An integer, 1 - 4

<gain_factor> A real number from 0.001 to 10000 for the RATio gain units, or from −60 dB to 80
dB for the DECibel gain units.

Example This example sets the probe external scaling gain factor for channel 1 to 10.
10 OUTPUT 707;":CHANNEL1:PROBE:EXTERNAL ON"
20 OUTPUT 707;":CHANNEL1:PROBE:EXTERNAL:GAIN 10,RATIO"
30 END

CHANnel<N>:PROBe:EXTernal command must be set to ON before issuing
this command or query or this command will have no effect.

10-43

Channel Commands
PROBe:EXTernal:GAIN

Query :CHANnel<N>:PROBe:EXTernal:GAIN?

The :CHANnel<N>:PROBe:EXTernal:GAIN? query returns the probe external gain
setting for the selected channel.

Returned Format [:CHANnel<N>:PROBe:EXTernal:GAIN] <gain_factor><NL>

Example This example places the external gain value of the probe on the specified channel in
the variable, Gain, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":CHANNEL1:PROBE:EXTERNAL ON"
20 OUTPUT 707;":CHANNEL1:PROBE:EXTERNAL:GAIN?"
30 ENTER 707;Gain
40 PRINT Gain
50 END

10-44

Channel Commands
PROBe:EXTernal:OFFSet

PROBe:EXTernal:OFFSet

Command :CHANnel<N>:PROBe:EXTernal:OFFSet <offset_value>

The :CHANnel<N>:PROBe:EXTernal:OFFSet command sets the external vertical
value for the probe that is represented at the center of the display for the selected
channel. Offset parameters are probe and vertical scale dependent.
When using the 113xA series probes, the CHANnel<N>:PROBe:STYPe command
determines how the offset is applied. When CHANnel<N>:PROBe:STYPe SINGle
is selected, the :CHANnel<N>:PROBe:EXTernal:OFFset command changes the
offset value of the probe amplifier. When CHANnel<N>:PROBe:STYPe
DIFFerential is selected, the :CHANnel<N>:PROBe:EXTernal:OFFSet command
changes the offset value of the channel amplifier.

<N> An integer, 1 - 4

<offset_value> A real number for the offset value at center screen. Usually expressed in volts, but
can be in other measurement units, such as amperes, if you have specified other units
using the :CHANnel<N>:PROBe:EXTernal:UNITs command.

Example This example sets the external offset for the probe on channel 1 to 0.125 in the current
measurement units:
10 OUTPUT 707;"CHANNEL1:PROBE:EXTERNAL ON"
20 OUTPUT 707;":CHANNEL1:PROBE:EXTERNAL:OFFSET 125E-3"
30 END

CHANnel<N>:PROBe:EXTernal command must be set to ON before issuing
this command or query or this command will have no effect.

10-45

Channel Commands
PROBe:EXTernal:OFFSet

Query :CHANnel<N>:EXTernal:PROBe:OFFSet?

The :CHANnel<N>:PROBe:EXTernal:OFFSet? query returns the current external
offset value for the probe on the specified channel.

Returned Format [CHANnel<N>:PROBe:EXTernal:OFFSet] <offset_value><NL>

Example This example places the external offset value of the probe on the specified channel in
the variable, Offset, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;"CHANNEL1:PROBE:EXTERNAL ON"
30 OUTPUT 707;"CHANNEL1:PROBE:EXTERNAL:OFFSET?"
40 ENTER 707;Offset
50 PRINT Offset
60 END

10-46

Channel Commands
PROBe:EXTernal:UNITs

PROBe:EXTernal:UNITs

Command :CHANnel<N>:PROBe:EXTernal:UNITs {VOLT | AMPere |
WATT | UNKNown}

The :CHANnel<N>:PROBe:EXTernal:UNITs command sets the probe external
vertical units on the specified channel. You can specify Y-axis units of VOLTs, AMPs,
WATTs, or UNKNown. The units are implied for other pertinent channel probe
external commands and channel commands (such as
:CHANnel<N>:PROBe:EXTernal:OFFSet and :CHANnel<N>:RANGe). See the
Probe Setup dialog box for more information.

<N> An integer, 1 - 4

Example This example sets the external units for the probe on channel 1 to amperes.
10 OUTPUT 707;"CHANNEL1:PROBE:EXTERNAL ON"
20 OUTPUT 707;":CHANNEL1:PROBE:EXTERNAL:UNITS AMPERE"
30 END

CHANnel<N>:PROBe:EXTernal command must be set to ON before issuing
this command or query or this command will have no effect. UNITs can also
be set using the CHANnel<N>:UNITs command.

10-47

Channel Commands
PROBe:EXTernal:UNITs

Query :CHANnel<N>:PROBe:EXTernal:UNITs?

The :CHANnel<N>:PROBe:EXTernal:UNITs? query returns the current external
units setting for the probe on the specified channel.

Returned Format [:CHANnel<N>:PROBe:EXTernal:UNITs] {VOLT | AMPere | WATT |
UNKNown}<NL>

Example This example places the external vertical units for the probe on the specified channel
in the string variable, Units$, then prints the contents of the variable to the computer's
screen.
10 DIM Units$[50]
20 OUTPUT 707;"CHANNEL1:PROBE:EXTERNAL ON"
30 OUTPUT 707;"CHANNEL1:PROBE:EXTERNAL:UNITS?"
40 ENTER 707;Units$
50 PRINT Units$
60 END

10-48

Channel Commands
PROBe:GAIN

PROBe:GAIN

Command :CHANnel<N>:PROBe:GAIN {X1 | X10}

The :CHANnel<N>:PROBe:GAIN command sets the 1154A probe input amplifier
gain.
If an 1154A probe is not connected to the channel you will get a settings conflict error.

<N> An integer, 1 - 4

Example This example sets the probe gain for channel 1 to times 10.
10 OUTPUT 707;":CHANNEL1:PROBE:GAIN X10"
20 END

Query :CHANnel<N>:PROBe:GAIN?

The :CHANnel<N>:PROBe:GAIN? query returns the current probe gain setting for
the selected channel.

Returned Format [:CHANnel<N>:PROBe:GAIN] {X1 | X10}<NL>

This command is valid only for the 1154A probe.

10-49

Channel Commands
PROBe:HEAD:ADD

PROBe:HEAD:ADD

Command :CHANnel<N>:PROBe:HEAD:ADD “head”, [“label”]

The :CHANnel<N>:PROBe:HEAD:ADD command adds an entry to the list of probe
heads.

<N> An integer, 1 - 4

“head” A quoted string matching the probe head model such as “N5381A”, “E2678A”, etc.

“label” An optional quoted string for the head label.

Example This example adds the probe head N5381A to the list of probe heads for channel 1.
10 OUTPUT 707;":CHANNEL1:PROBE:HEAD:ADD “N5381A”"
20 END

Query There is no query available for this command.

10-50

Channel Commands
PROBe:HEAD:DELete ALL

PROBe:HEAD:DELete ALL

Command :CHANnel<N>:PROBe:HEAD:DELete ALL

The :CHANnel<N>:PROBe:HEAD:DELete ALL command deletes all the nodes in
the list of probe heads except for one default probe head which remains after this
command is executed.

<N> An integer, 1 - 4

Example This example deletes the entire list of probe heads for channel 1 except for the default
head.
10 OUTPUT 707;":CHANNEL1:PROBE:HEAD:DELete ALL"
20 END

Query There is no query available for this command.

10-51

Channel Commands
PROBe:HEAD:SELect

PROBe:HEAD:SELect

Command :CHANnel<N>:PROBe:HEAD:SELect <head_list_number>

The :CHANnel<N>:PROBe:HEAD:SELect command selects the position number of
the probe head being used from a list of possible probe head choices. Note that the
actual probe head model number of label cannot be used to specify the probe head.
Instead, its position in the list is used to indicate which probe head is being used.

<N> An integer, 1 - 4

<head_list_
number>

Specifies the position in the configure list. The entry at the top of the list starts at 1.
Note that this command does not reference the list by label or model number because
there can be duplicate entries in the list.

Example This example sets the probe head for channel 1 to the first selection in the
configuration list.
10 OUTPUT 707;":CHANNEL1:PROBE:HEAD:SELect 1"
20 END

Query :CHANnel<N>:PROBe:HEAD:SELect?

The :CHANnel<N>:PROBe:HEAD:SELect? query returns a SCPI formatted string
of the selected probe head.

10-52

Channel Commands
PROBe:ID?

PROBe:ID?

Query :CHANnel<N>:PROBe:ID?

The :CHANnel<N>:PROBe:ID? query returns the type of probe attached to the
specified oscilloscope channel.

<N> An integer, 1 - 4

Returned Format [:CHANnel<N>:PROBe:ID] <probe_id>

<probe_id> A string of alphanumeric characters. Some of the possible returned values are:

Example This example reports the probe type connected to channel 1, if one is connected.
10 OUTPUT 707;":CHANNEL1:PROBE:ID?"
20 END

1131A 1132A 1134A

1152A 1154A 1156A

1157A 1158A 1159A

1163A 1168A 1169A

AutoProbe E2621A E2622A

E2695A E2697A N5380A

N5381A N5382A E2695A

No Probe Unknown User Defined Probe

10-53

Channel Commands
PROBe:SKEW

PROBe:SKEW

Command :CHANnel<N>:PROBe:SKEW <skew_value>

The :CHANnel<N>:PROBe:SKEW command sets the channel-to-channel skew
factor for the specified channel. You can use the oscilloscope's probe skew control
to remove timing differences between probes or cables on different channels.

<N> An integer, 1 - 4

<skew_value> A real number for the skew value, in the range -1 ms to +1 ms.

Example This example sets the probe skew for channel 1 to 10 μs.
10 OUTPUT 707;":CHANNEL1:PROBE:SKEW 10E-6"
20 END

Query :CHANnel<N>:PROBe:SKEW?

The :CHANnel<N>:PROBe:SKEW? query returns the current probe skew setting for
the selected channel.

Returned Format [:CHANnel<N>:PROBe:SKEW] <skew_value><NL>

10-54

Channel Commands
PROBe:STYPe

PROBe:STYPe

Command :CHANnel<N>:PROBe:STYPe {DIFFerential | SINGle}

The :CHANnel<N>:PROBe:STYPe command sets the channel probe signal type
(STYPe) to differential or single-ended when using the 113xA series probes, 1168A
probe, and 1169A probe. This setting determines how offset is applied.
When single-ended is selected, the :CHANnel<N>:PROBe:EXTernal:OFFset
command changes the offset value of the probe amplifier. When differential is
selected, the :CHANnel<N>:PROBe:EXTernal:OFFset command changes the offset
value of the channel amplifier.

<N> An integer, 1 - 4

Example This example sets the probe mode to single-ended.
10 OUTPUT 707;":CHANNEL1:PROBE:STYPE SINGLE"
20 END

Query :CHANnel<N>:PROBe:STYPe?

The :CHANnel<N>:PROBe:STYPe? query returns the current probe mode setting
for the selected channel.

Returned Format [:CHANnel<N>:PROBe:STYPe] {DIFFerential | SINGle}<NL>

This command is valid only for the 113xA series probes, 1168A probe, and
1169A probe.

10-55

Channel Commands
RANGe

RANGe

Command :CHANnel<N>:RANGe <range_value>

The :CHANnel<N>:RANGe command defines the full-scale vertical axis of the
selected channel. It sets up acquisition and display hardware to display the waveform
at a given range scale. The values represent the full-scale deflection factor of the
vertical axis in volts. These values change as the probe attenuation factor is changed.

<N> An integer, 1 - 4

<range_value> A real number for the full-scale voltage of the specified channel number.

Example This example sets the full-scale range for channel 1 to 500 mV.
10 OUTPUT 707;":CHANNEL1:RANGE 500E-3"
20 END

Query :CHANnel<N>:RANGe?

The :CHANnel<N>:RANGe? query returns the current full-scale vertical axis setting
for the selected channel.

Returned Format [:CHANnel<N>:RANGe]<range_value><NL>

Example This example places the current range value in the number variable, Setting, then
prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF”!Response headers off
20 OUTPUT 707;":CHANNEL1:RANGE?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

10-56

Channel Commands
SCALe

SCALe

Command :CHANnel<N>:SCALe <scale_value>

The :CHANnel<N>:SCALe command sets the vertical scale, or units per division, of
the selected channel. This command is the same as the front-panel channel scale.

<N> An integer, 1 - 4

<scale_value> A real number for the vertical scale of the channel in units per division.

Example This example sets the scale value for channel 1 to 500 mV/div.
10 OUTPUT 707;":CHANNEL1:SCALE 500E-3"
20 END

Query :CHANnel<N>:SCALe?

The :CHANnel<N>:SCALe? query returns the current scale setting for the specified
channel.

Returned Format [:CHANnel<N>:SCALe] <scale_value><NL>

Example This example places the current scale value in the number variable, Setting, then prints
the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":CHANNEL1:SCALE?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

10-57

Channel Commands
UNITs

UNITs

Command :CHANnel<N>:UNITs {VOLT | AMPere | WATT | UNKNown}

The :CHANnel<N>:UNITs command sets the vertical units. You can specify
Y-axis units of VOLTs, AMPs, WATTs, or UNKNown. The units are implied for
other pertinent channel commands (such as :CHANnel<N>:RANGe and
:CHANnel<N>:OFFSet). See the Probe Setup dialog box for more information.

<N> An integer, 1 - 4

Example This example sets the units for channel 1 to amperes.
10 OUTPUT 707;":CHANNEL1:UNITS AMPERE"
20 END

Query :CHANnel<N>:UNITs?

The :CHANnel<N>:UNITs? query returns the current units setting for the specified
channel.

Returned Format [:CHANnel<N>:UNITs] {VOLT | AMPere | WATT | UNKNown}<NL>

Example This example places the vertical units for the specified channel in the string variable,
Units$, then prints the contents of the variable to the computer's screen.
10 DIM Units$[50]
20 OUTPUT 707;"CHANNEL1:UNITS?"
30 ENTER 707;Units$
40 PRINT Units$
50 END

UNITs can also be set using the CHANnel<N>:PROBe:EXTernal:UNITs
command when CHANnel<N>:PROBe:EXTernal command has been set to
ON.

10-58

Channel Commands
UNITs

11

Calibration Commands

11-2

Calibration Commands

This chapter briefly explains the calibration of the oscilloscope. It is intended
to give you and the calibration lab personnel an understanding of the
calibration procedure and how the calibration subsystem is intended to be
used.

11-3

Calibration Commands
Oscilloscope Calibration

Oscilloscope Calibration

Oscilloscope calibration establishes calibration factors for the oscilloscope. These
factors are stored on the oscilloscope's hard disk.

• Initiate the calibration from the “Utilities Calibration” menu.
You should calibrate the oscilloscope periodically (at least annually), or if the ambient
temperature since the last calibration has changed more than ±5 °C. The temperature
change since the last calibration is shown on the calibration status screen which is
found under the “Utilities Calibration” dialog. It is the line labeled “Calibration Δ
Temp: _ °C.”

See Also The Oscilloscope’s Service Guide has more details about the calibration.

11-4

Calibration Commands
Probe Calibration

Probe Calibration

Probe calibration establishes the gain and offset of a probe that is connected to a
channel of the oscilloscope, and applies these factors to the calibration of that channel.

• Initiate probe calibration from the “Setup -> Channel -> Probes -> Calibrate
Probe” menu.
To achieve the specified accuracy with a probe connected to a channel, make sure the
oscilloscope is calibrated.
• For probes that the oscilloscope can identify through the probe power connector,

like the 1158A, the oscilloscope automatically adjusts the vertical scale factors for
that channel even if a probe calibration is not performed.

• For nonidentified probes, the oscilloscope adjusts the vertical scale factors only if
a probe calibration is performed.

• If you do not perform a probe calibration but want to use an unidentified probe,
enter the attenuation factor in the “Setup -> Channel -> Probes -> Configure
Probing System -> User Defined Probe” menu.
• If the probe being calibrated has an attenuation factor that allows the oscilloscope

to adjust the gain (in hardware) to produce even steps in the vertical scale factors,
the oscilloscope will do so.

• If the probe being calibrated has an unusual attenuation, like 3.75, the oscilloscope
may have to adjust the vertical scale factors to an unusual number, like 3.75 V/div.

Typically, probes have standard attenuation factors such as divide by 10, divide by
20, or divide by 100.

11-5

Calibration Commands

The commands in the CALibration subsystem allow you to change the output
of the front-panel Aux Out connector, adjust the skew of channels, and check
the status of calibration. These CALibration commands and queries are
implemented in the Infiniium Oscilloscopes:

• OUTPut
• SKEW
• STATus?

11-6

Calibration Commands
OUTPut

OUTPut

Command :CALibrate:OUTPut {{AC | TRIGOUT | PROBecomp} |
{DC,<dc_value>}}

The :CALibrate:OUTPut command sets the coupling frequency, trigger output pulse,
and dc level of the calibrator waveform output through the front-panel Aux Out
connector. To trigger other instruments, use the TRIGOUT setting to cause the
oscilloscope to send a pulse when the trigger event occurs. The AC sets the Aux Out
to be the probe compensation square wave (approximately 750 Hz).

<dc_value> A real number for the DC level value in volts, adjustable from -2.4 V to +2.4 V dc.

Example This example puts a DC voltage of 2.0 volts on the oscilloscope front-panel Aux Out
connector.
10 OUTPUT 707;":CALIBRATE:OUTPUT DC,2.0"
20 END

Query :CALibrate:OUTPut?

The :CALibrate:OUTPut? query returns the current setup.

Returned Format [:CALibrate:OUTPut] {{AC | TRIGOUT} | {DC,<dc_value>}}

Example This example places the current selection for the DC calibration to be printed in the
string variable, Selection$, then prints the contents of the variable to the computer's
screen.
10 DIM Selection$[50]!Dimension variable
20 OUTPUT 707;":CALIBRATE:OUTPUT?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

11-7

Calibration Commands
SKEW

SKEW

Command :CALibrate:SKEW CHANnel<N>,<skew_value>

The :CALibrate:SKEW command sets the channel-to-channel skew factor for a
channel. The numeric argument is a real number in seconds, which is added to the
current time base position to shift the position of the channel’s data in time. Use this
command to compensate for differences in the electrical lengths of input paths due to
cabling and probes.

<N> An integer, 1 - 4.

<skew_value> A real number, in seconds.

Example This example sets the oscilloscope channel 1 skew to 1 μs.
10 OUTPUT 707;":CALIBRATE:SKEW CHANNEL1,1E-6"
20 END

Query :CALibrate:SKEW? CHANnel<N>

The :CALibrate:SKEW? query returns the current skew value.

Returned Format [:CALibrate:SKEW] <skew_value><NL>

11-8

Calibration Commands
STATus?

STATus?

Query :CALibrate:STATus?

The :CALibrate:STATus? query returns the calibration status of the oscilloscope.
These are ten, comma-separated integers, with 1, 0, or -1. A "1" indicates pass, a "0"
indicates fail and a "-1" indicates unused. This matches the status in the Calibration
dialog box in the Utilities menu.

Returned Format [:CALibrate:STATus] <status>

<status> <Oscilloscope Frame Status>,
<Channel1 Vertical>, <Channel1 Trigger>,
<Channel2 Vertical>, <Channel2 Trigger>,
<Channel3 Vertical>, <Channel3 Trigger>,
<Channel4 Vertical>, <Channel4 Trigger>,
<Aux Trigger>

12

Common Commands

12-2

Common Commands

Common commands are defined by the IEEE 488.2 standard. They control
generic device functions that are common to many different types of
instruments. Common commands can be received and processed by the
oscilloscope, whether they are sent over the GPIB as separate program
messages or within other program messages.

These common commands and queries are implemented in the Infiniium
Oscilloscopes:

• *CLS (Clear Status)
• *ESE (Event Status Enable)
• *ESR? (Event Status Register)
• *IDN? (Identification Number)
• *LRN? (Learn)
• *OPC (Operation Complete)
• *OPT? (Option)
• *PSC (Power-on Status Clear)
• *RCL (Recall)
• *RST (Reset)
• *SAV (Save)
• *SRE (Service Request Enable)
• *STB? (Status Byte)
• *TRG (Trigger)
• *TST? (Test)
• *WAI (Wait-to-Continue)

12-3

Common Commands

Receiving Common Commands
Common commands can be received and processed by the oscilloscope,
whether they are sent over the GPIB as separate program messages or within
other program messages. If a subsystem is currently selected and a common
command is received by the oscilloscope, the oscilloscope remains in the
selected subsystem. For example, if the program message
"ACQUIRE:AVERAGE ON;*CLS;COUNT 1024"

is received by the oscilloscope, the oscilloscope sets the acquire type, clears
the status information, then sets the number of averages without leaving the
selected subsystem.

Status Registers
The following two status registers used by common commands have an enable
(mask) register. By setting bits in the enable register, you can select the status
information for use. Refer to the chapter, “Status Reporting,” for a complete
discussion of status.

Table 12-1 Status and Enable Registers

Headers and Common Commands.

Headers are not prepended to common commands.

Status Register Enable Register

Event Status Register Event Status Enable Register

Status Byte Register Service Request Enable Register

12-4

Common Commands
*CLS (Clear Status)

 *CLS (Clear Status)

Command *CLS

The *CLS command clears all status and error registers.

Example This example clears the status data structures of the oscilloscope.
10 OUTPUT 707;"*CLS"
20 END

See Also Refer to the “Status Reporting” chapter for a complete discussion of status.

12-5

Common Commands
*ESE (Event Status Enable)

*ESE (Event Status Enable)

Command *ESE <mask>

The *ESE command sets the Standard Event Status Enable Register bits.

<mask> An integer, 0 to 255, representing a mask value for the bits to be enabled in the
Standard Event Status Register as shown in Table 12-2.

Example This example enables the User Request (URQ) bit of the Standard Event Status Enable
Register. When this bit is enabled and a front-panel key is pressed, the Event Summary
bit (ESB) in the Status Byte Register is also set.
10 OUTPUT 707;"*ESE 64"
20 END

Query *ESE?

The *ESE? query returns the current contents of the Standard Event Status Enable
Register.

Returned Format <mask><NL>

<mask> An integer, +0 to +255 (the plus sign is also returned), representing a mask value for
the bits enabled in the Standard Event Status Register as shown in Table 12-2.

Example This example places the current contents of the Standard Event Status Enable Register
in the numeric variable, Event. The value of the variable is printed on the computer's
screen.
10 OUTPUT 707;"*ESE?"
20 ENTER 707;Event
30 PRINT Event
40 END

12-6

Common Commands
*ESE (Event Status Enable)

The Standard Event Status Enable Register contains a mask value for the bits to be
enabled in the Standard Event Status Register. A "1" in the Standard Event Status
Enable Register enables the corresponding bit in the Standard Event Status Register.
A "0" in the enable register disables the corresponding bit.

Table 12-2 Standard Event Status Enable Register Bits

See Also Refer to the chapter, “Status Reporting,” for a complete discussion of status.

Bit Weight Enables Definition

7 128 PON - Power On Indicates power is turned on.

6 64 Not Used.
Permanently set to zero.

5 32 CME - Command Error Indicates whether the parser detected an
error.

4 16 EXE - Execution Error Indicates whether a parameter was out of
range, or was inconsistent with the
current settings.

3 8 DDE - Device Dependent ErrorIndicates whether the device was unable
to complete an operation for device-
dependent reasons.

2 4 QYE - Query Error Indicates if the protocol for queries has
been violated.

1 2 RQC - Request Control Indicates whether the device is requesting
control.

0 1 OPC - Operation Complete Indicates whether the device has
completed all pending operations.

12-7

Common Commands
*ESR? (Event Status Register)

*ESR? (Event Status Register)

Query *ESR?

The *ESR? query returns the contents of the Standard Event Status Register. Reading
this register clears the Standard Event Status Register, as does a *CLS.

Returned Format <status><NL>

<status> An integer, 0 to 255, representing the total bit weights of all bits that are high at the
time you read the register.

Example This example places the current contents of the Standard Event Status Register in the
numeric variable, Event, then prints the value of the variable to the computer's screen.

10 OUTPUT 707;"*ESR?"
20 ENTER 707;Event
30 PRINT Event
40 END

Table 12-3 lists each bit in the Event Status Register and the corresponding bit weights.

12-8

Common Commands
*ESR? (Event Status Register)

Table 12-3 Standard Event Status Register Bits

Bit Bit Weight Bit Name Condition

7 128 PON 1 = OFF to ON transition has occurred.

6 64 Not Used. Permanently set to zero.

5 32 CME 0 = no command errors.
1 = a command error has been detected.

4 16 EXE 0 = no execution error.
1 = an execution error has been detected.

3 8 DDE 0 = no device-dependent errors.
1 = a device-dependent error has been detected.

2 4 QYE 0 = no query errors.
1 = a query error has been detected.

1 2 RQC 0 = request control - NOT used - always 0.

0 1 OPC 0 = operation is not complete.
1 = operation is complete.

0 = False = Low 1 = True = High

12-9

Common Commands
*IDN? (Identification Number)

*IDN? (Identification Number)

Query *IDN?

The *IDN? query returns the company name, oscilloscope model number, serial
number, and software version by returning this string:

Agilent Technologies,<Model #>,<USXXXXXXXX>,<Rev #>
[,<Options>]

<Model #> Specifies the model number of the oscilloscope.

<USXXXXXXXX> Specifies the serial number of the oscilloscope. The first four digits and letter are the
serial prefix, which is the same for all identical oscilloscopes. The last five digits are
the serial suffix, which is assigned sequentially, and is different for each oscilloscope.

<Rev #> Specifies the software version of the oscilloscope, and is the revision number.

<Options> Comma separated list of the installed options.

Returned Format Agilent Technologies,DSO9404A,USXXXXXXXX,A.XX.XX

Example This example places the oscilloscope's identification information in the string
variable, Identify$, then prints the identification information to the computer's screen.

10 DIM Identify$[50]!dimension variable
20 OUTPUT 707;"*IDN?"
30 ENTER 707;Identify$
40 PRINT Identify$
50 END

12-10

Common Commands
*LRN? (Learn)

*LRN? (Learn)

Query *LRN?

The *LRN? query returns a block of data that contains the oscilloscope's current setup.
You can store the oscilloscope's setup and send it back to the oscilloscope at a later
time. This block of setup data should be sent to the oscilloscope just as it is. It works
because of its embedded ":SYST:SET" header.

Returned Format :SYST:SET<setup><NL>

<setup> This is a definite-length, arbitrary block response specifying the current oscilloscope
setup. The block size is subject to change with different firmware revisions.

Example This example sets the oscilloscope’s address and asks for the block of setup data, then
determines the length according to the IEEE 488.2 block specification. It then reads
the block of setup data and the last EOF character.

10 ! Set up the oscilloscope’s address and
20 ! ask for the learn string...
30 ASSIGN @Scope TO 707
40 OUTPUT @Scope:"*LRN?"
50 !
60 ! Search for the # sign.
70 !
80 Find_pound_sign: !
90 ENTER @Scope USING "#,A";Thischar$
100 IF Thischar$<>"#" THEN Find_pound_sign
110 !
120 ! Determine the string length according
130 ! to the IEEE 488.2 # block spec.
140 ! Read the string then the last EOF char.
150 !
160 ENTER @Scope USING "#,D";Digit_count
170 ENTER @Scope USING
"#,"&VAL$(Digit_count)&"D";Stringlength
180 ALLOCATE Learn_string$[Stringlength+1]
190 ENTER @Scope USING "-K";Learn_string$
200 OUTPUT 707;":syst:err?"
210 ENTER 707;Errornum
220 PRINT "Error Status=";Errornum

12-11

Common Commands
*LRN? (Learn)

See Also :SYSTem:SETup command and query. When HEADers is ON and LONGform is
OFF, the :SYSTem:SETup command performs the same function as the *LRN? query.
However, *LRN and SETup block setup data are not interchangeable.

*LRN? Returns Prefix to Setup Block

The *LRN? query always returns :SYST:SET as a prefix to the setup block.
The :SYSTem:HEADer command has no effect on this response.

12-12

Common Commands
*OPC (Operation Complete)

*OPC (Operation Complete)

Command *OPC

The *OPC command sets the operation complete bit in the Standard Event Status
Register when all pending device operations have finished.

Example This example sets the operation complete bit in the Standard Event Status Register
when the DIGitize operation is complete.

10 OUTPUT 707;":DIGITIZE CHANNEL1;*OPC"
20 END

Query *OPC?

The *OPC? query places an ASCII character “1” in the oscilloscope's output queue
when all pending selected device operations have finished.

Returned Format 1<NL>

Example This example places an ASCII character “1” in the oscilloscope's output queue when
the AUToscale operation is complete. Then the value in the output queue is placed
in the numeric variable “Complete.”

10 OUTPUT 707;":AUTOSCALE;*OPC?"
20 ENTER 707;Complete
30 PRINT Complete
40 END

The *OPC? query allows synchronization between the computer and the oscilloscope
by using the message available (MAV) bit in the Status Byte, or by reading the output
queue. Unlike the *OPC command, the *OPC query does not affect the OPC Event
bit in the Standard Event Status Register.

12-13

Common Commands
*OPT? (Option)

*OPT? (Option)

Query *OPT?

The *OPT? query returns a string with a list of installed options. If no options are
installed, the string will have a 0 as the first character.
The length of the returned string may increase as options become available in the
future. Once implemented, an option name will be appended to the end of the returned
string, delimited by a comma.

Returned Format [002,EZP,EZJ,SDA,LSS,ABD,ABC,ABB,NRD,ERC,AIP,PCI1,ETH,DVI,
HDM,B30,CAN,SA1,DDR]<NL>

See on-line help system in the Help/About dialog box for the
installed options list.

Example This example places all options into the string variable, Options$, then prints the
option name to the computer's screen.
10 DIM Options$[100]
20 OUTPUT 707;"*OPT?"
30 ENTER 707;Options$
40 PRINT Options$
50 END

12-14

Common Commands
*PSC (Power-on Status Clear)

*PSC (Power-on Status Clear)

Command *PSC {{ON|1} | {OFF|0}}

The *PSC command determines whether or not the SRQ line is set upon the
completion of the oscilloscope’s boot process. When the *PSC flag is set to 1, the
Power On (PON) bit of the Standard Event Status Register is 0 during the boot process.
When the *PSC flag is set to 0, the PON bit is set to a 1 during the boot process.
When the *PSC flag is set to 0, the Standard Event Status Enable Register must be
set to 128 decimal and the Service Request Enable Register must be set to 32 decimal.
This allows the Power On (PON) bit to set the SRQ line when the oscilloscope is
ready to receive commands.

Example This example sets the *PSC flag to 0 which sets the SRQ line during the boot process.
10 OUTPUT 707;”*PSC 0;*SRE 32;*ESE 128”
20 END

Query The *PSC? query returns the value of the *PSC flag.

Returned Format 1<NL>

Example This example places the *PSC flag into the integer variable Pscflag.
10 OUTPUT 707;”*PSC?”
20 ENTER 707;Pscflag
30 PRINT Pscflag
40 END

If you are using a LAN interface rather than a GPIB interface, it is not possible
to receive the SRQ during the boot process.

12-15

Common Commands
*RCL (Recall)

*RCL (Recall)

Command *RCL <register>

The *RCL command restores the state of the oscilloscope to a setup previously stored
in the specified save/recall register. An oscilloscope setup must have been stored
previously in the specified register. Registers 0 through 9 are general-purpose
registers and can be used by the *RCL command.

<register> An integer, 0 through 9, specifying the save/recall register that contains the
oscilloscope setup you want to recall.

Example This example restores the oscilloscope to the oscilloscope setup stored in
register 3.

10 OUTPUT 707;"*RCL 3"
20 END

See Also *SAV (Save). An error message appears on the oscilloscope’s display if nothing has
been previously saved in the specified register.

12-16

Common Commands
*RST (Reset)

*RST (Reset)

Command *RST

The *RST command performs a default setup which is the same as pressing the
oscilloscope front panel default key.

Example This example resets the oscilloscope to a known state.

10 OUTPUT 707;"*RST"
20 END

The default values for all of the Infiniium controls is located in the Infiniium
Help System under Default Setup.

12-17

Common Commands
*SAV (Save)

*SAV (Save)

Command *SAV <register>

The *SAV command stores the current state of the oscilloscope in a save register.

<register> An integer, 0 through 9, specifying the register used to save the current oscilloscope
setup.

Example This example stores the current oscilloscope setup to register 3.

10 OUTPUT 707;"*SAV 3"
20 END

See Also *RCL (Recall).

12-18

Common Commands
*SRE (Service Request Enable)

*SRE (Service Request Enable)

Command *SRE <mask>

The *SRE command sets the Service Request Enable Register bits. By setting the
*SRE, when the event happens, you have enabled the oscilloscope’s interrupt
capability. The oscilloscope will then do an SRQ (service request), which is an
interrupt.

<mask> An integer, 0 to 255, representing a mask value for the bits to be enabled in the Service
Request Enable Register as shown in Table 12-4.

Example This example enables a service request to be generated when a message is available
in the output queue. When a message is available, the MAV bit is high.

10 OUTPUT 707;"*SRE 16"
20 END

Query *SRE?

The *SRE? query returns the current contents of the Service Request Enable Register.

Returned Format <mask><NL>

<mask> An integer, 0 to 255, representing a mask value for the bits enabled in the Service
Request Enable Register.

Example This example places the current contents of the Service Request Enable Register in
the numeric variable, Value, then prints the value of the variable to the computer's
screen.

10 OUTPUT 707;"*SRE?"
20 ENTER 707;Value
30 PRINT Value
40 END

12-19

Common Commands
*SRE (Service Request Enable)

The Service Request Enable Register contains a mask value for the bits to be enabled
in the Status Byte Register. A “1” in the Service Request Enable Register enables the
corresponding bit in the Status Byte Register. A “0” disables the bit.

Table 12-4 Service Request Enable Register Bits

Bit Weight Enables

7 128 OPER - Operation Status Register

6 64 Not Used

5 32 ESB - Event Status Bit

4 16 MAV - Message Available

3 8 Not Used

2 4 MSG - Message

1 2 USR - User Event Register

0 1 TRG - Trigger

12-20

Common Commands
*STB? (Status Byte)

*STB? (Status Byte)

Query *STB?

The *STB? query returns the current contents of the Status Byte, including the Master
Summary Status (MSS) bit. See Table 12-5 for Status Byte Register bit definitions.

Returned Format <value><NL>

<value> An integer, 0 to 255, representing a mask value for the bits enabled in the Status Byte.

Example This example reads the contents of the Status Byte into the numeric variable, Value,
then prints the value of the variable to the computer's screen.

10 OUTPUT 707;"*STB?"
20 ENTER 707;Value
30 PRINT Value
40 END

In response to a serial poll (SPOLL), Request Service (RQS) is reported on
bit 6 of the status byte. Otherwise, the Master Summary Status bit (MSS) is reported
on bit 6. MSS is the inclusive OR of the bitwise combination, excluding bit 6, of the
Status Byte Register and the Service Request Enable Register. The MSS message
indicates that the oscilloscope is requesting service (SRQ).

12-21

Common Commands
*STB? (Status Byte)

Table 12-5 Status Byte Register Bits

Bit Bit Weight Bit Name Condition

7 128 OPER 0 = no enabled operation status conditions have
occurred
1 = an enabled operation status condition has occurred

6 64 RQS/MSS 0 = oscilloscope has no reason for service
1 = oscilloscope is requesting service

5 32 ESB 0 = no event status conditions have occurred
1 = an enabled event status condition has occurred

4 16 MAV 0 = no output messages are ready
1 = an output message is ready

3 8 --- 0 = not used

2 4 MSG 0 = no message has been displayed
1 = message has been displayed

1 2 USR 0 = no enabled user event conditions have occurred
1 = an enabled user event condition has occurred

0 1 TRG 0 = no trigger has occurred
1 = a trigger occurred

0 = False = Low 1 = True = High

12-22

Common Commands
*TRG (Trigger)

*TRG (Trigger)

Command *TRG

The *TRG command has the same effect as the Group Execute Trigger message (GET)
or RUN command. It acquires data for the active waveform display, if the trigger
conditions are met, according to the current settings.

Example This example starts the data acquisition for the active waveform display according to
the current settings.

10 OUTPUT 707;"*TRG"
20 END

Trigger Conditions Must Be Met

When you send the *TRG command in Single trigger mode, the trigger
conditions must be met before the oscilloscope will acquire data.

12-23

Common Commands
*TST? (Test)

*TST? (Test)

Query *TST?

The *TST? query causes the oscilloscope to perform a self-test, and places a response
in the output queue indicating whether or not the self-test completed without any
detected errors. Use the :SYSTem:ERRor command to check for errors. A zero
indicates that the test passed and a non-zero indicates the self-test failed.

Returned Format <result><NL>

<result> 0 for pass; non-zero for fail.

Example This example performs a self-test on the oscilloscope and places the results in the
numeric variable, Results. The program then prints the results to the computer's
screen.

10 OUTPUT 707;"*TST?"
20 ENTER 707;Results
30 PRINT Results
40 END

If a test fails, refer to the troubleshooting section of the service guide.

Disconnect Inputs First

You must disconnect all front-panel inputs before sending the *TST?
command.

Expanded Error Reporting

The :SELFtest:SCOPETEST command has expanded error reporting. Instead
of using *TST?, Agilent recommends that you use the :SELFtest:SCOPETEST
command. In either case, be sure you disconnect all front-panel inputs before
sending the *TST? command.

12-24

Common Commands
*WAI (Wait)

*WAI (Wait)

Command *WAI

The *WAI command has no function in the oscilloscope, but is parsed for
compatibility with other instruments.

Example Output 707;”*WAI”

13

Digital Commands

13-2

Digital Commands

The :DIGital modes and commands described in this chapter include:

• DISPlay
• LABel
• SIZE
• THReshold

The DIGital commands only apply to the MSO Oscilloscopes.

13-3

Digital Commands
DISPlay

DISPlay

Command :DIGital<N>[:DISPlay] {ON | OFF | 1 | 0}

The :DIGital<N>:DISPlay command enables or disables the view for the selected
digital channel. The digital subsystem must be enabled before this command will
work. See ENABle command in the root subsystem.

<N> An integer, 0 - 15.

Example This example turns on the display of bit 5 for the digital channels.
10 Output 707;”ENABLE DIGITAL”
20 Output 707;”DIGITAL5:DISPLAY ON”
30 END

Query :DIGital<N>[:DISPlay]?

The :DIGital<N>:DISPlay? query returns the value of the display setting for the
selected digital channel.

Returned Format [:DIGital<N>:DISPlay] {1 | 0}<NL>

The DIGital commands only apply to the MSO Oscilloscopes.

13-4

Digital Commands
LABel

LABel

Command :DIGital<N>:LABel <quoted_string>

The :DIGital<N>:LABel command sets the digital channel label to the quoted string.
Setting a label for a digital channel will also result in the name being added to the
label list.

<N> An integer, 1 - 2.

<quoted_string> A series of 16 or less characters as a quoted ASCII string.

Example This example sets the label for bit 7 to Clock.
10 Output 707;”:DIGital7:LABel ““Clock”””
20 END

Query :DIGital<N>:LABel?

The :DIGital<N>:LABel? query returns the name of the specified digital channel.

Return format [:DIGital<N>:LABel] <quoted_string><NL>

The DIGital commands only apply to the MSO Oscilloscopes.

Label strings are 16 characters or less, and may contain any commonly used
ASCII characters. Labels with more than 16 characters are truncated to 16
characters.

13-5

Digital Commands
SIZE

SIZE

Command DIGital<N>:SIZE {SMALl | MEDium | LARGe}

The :DIGital<N>:SIZE command changes the vertical size of all the displayed digital
channels. The digital subsystem must be enabled before this command will work.
See ENABle command in the root subsystem.

<N> An integer, 0 - 15.

Example This example changes the size to medium for all displayed digital channels or buses.
10 Output 707;”ENABLE DIGITAL”
20 Output 707;”DIGITAL5:SIZE MEDIUM”
30 END

Query :DIGital<N>:SIZE?

The :DIGital:CHANnel:SIZE? query returns the size of the displayed digital channels.

Returned Format [:DIGital<N>:SIZE] {SMALl | MEDium | LARGe}<NL>

The DIGital commands only apply to the MSO Oscilloscopes.

13-6

Digital Commands
THReshold

THReshold

Command :DIGital<N>:THReshold {CMOS50 | CMOS33 | CMOS25 |
ECL | PECL | TTL | <value>}

The :DIGital<N>:THReshold command sets the logic threshold value for a pod.
Setting the threshold for digital channels 0 through 7 sets the threshold for pod 1 while
setting the threshold for digital channels 8 through 15 sets the threshold for pod 2.
This command is equivalent to the POD<N>:THReshold command.
The threshold is used for triggering purposes and for displaying the digital data as
high (above the threshold) or low (below the threshold). The voltage values for the
predefined thresholds are:

CMOS50=2.5 V
CMOS33=1.65 V
CMOS25=1.25 V
ECL=-1.3 V
PECL=3.7 V
TTL=1.4 V

<N> An integer, 0 - 15.

<value> A real number representing the voltage value which distinguishes a 1 logic level from
a 0 logic level. Waveform voltages greater than the threshold are 1 logic levels while
waveform vlotages less than the threshold are 0 logic levels. The range of the
threshold voltage is from -8 volts to 8 volts.

Example This example sets the threshold to 5 volts for bits D15 through D8.
10 Output 707;”DIGital8:THReshold 5”
20 END

The DIGital commands only apply to the MSO Oscilloscopes.

13-7

Digital Commands
THReshold

Query :DIGital<N>:THREShold?

The :DIGital<N>:THReshold? query returns the threshold value for the specified pod.

Return format [:DIGital<N>:THReshold] {CMOS50 | CMOS33 | CMOS25 | ECL |
PECL | TTL | <value>}<NL>

13-8

14

Disk Commands

Disk Commands

The DISK subsystem commands perform the disk operations as defined in the
File menu. This allows saving and loading of waveforms and setups, as well
as saving screen images to bitmap files.

These DISK commands and queries are implemented in the Infiniium
Oscilloscopes:

• CDIRectory
• COPY
• DELete
• DIRectory?
• LOAD
• MDIRectory
• PWD?
• SAVE:IMAGe
• SAVE:JITTer
• SAVE:LISTing
• SAVE:MEASurements
• SAVE:SETup
• SAVE:WAVeform
• SEGMented

Enclose File Name in Quotation Marks

When specifying a file name, you must enclose it in quotation marks.

Filenames are Not Case Sensitive.

The filename that you use is not case sensitive.
14-2

Disk Commands
CDIRectory
CDIRectory

Command :DISK:CDIRectory "<directory>"

The :DISK:CDIRectory command changes the present working directory to the
designated directory name. An error occurs when the requested directory does not
exist. You can then view the error with the :SYSTem:ERRor? [{NUMBer | STRing}]
query.

<directory> A character-quoted ASCII string, which can include the subdirectory designation.
You must separate the directory name and any subdirectories with a backslash (\).

Example This example sets the present working directory to C:\Document and Settings\All
Users\Shared Documents\Infiniium\Data.
10 OUTPUT 707;":DISK:CDIRECTORY ""C:\Document and Settings\All
Users\Shared Documents\Infiniium\Data"""
20 END
14-3

Disk Commands
COPY
COPY

Command :DISK:COPY "<source_file>",”<dest_file>”

The :DISK:COPY command copies a source file from the disk to a destination file
on the disk. An error is displayed on the oscilloscope screen if the requested file does
not exist. The default path is C:\Document and Settings\All Users\Shared
Documents\Infiniium\Data.

<source_file>
<dest_file>

A character-quoted ASCII string which can include subdirectories with the name of
the file.

Example This example copies FILE1.SET to NEWFILE.SET on the disk.
10 OUTPUT 707;":DISK:COPY ""FILE1.SET"",””NEWFILE.SET””"
20 END
14-4

Disk Commands
DELete
DELete

Command :DISK:DELete "<file_name>"

The :DISK:DELete command deletes a file from the disk. An error is displayed on
the oscilloscope screen if the requested file does not exist. The default path is
C:\Document and Settings\All Users\Shared Documents\Infiniium\Data.

<file_name> A character-quoted ASCII string which can include subdirectories with the name of
the file.

Example This example deletes FILE1.SET from the disk.
10 OUTPUT 707;":DISK:DELETE ""FILE1.SET"""
20 END
14-5

Disk Commands
DIRectory?
DIRectory?

Query :DISK:DIRectory? ["<directory>"]

The :DISK:DIRectory? query returns the requested directory listing. Each entry is
63 bytes long, including a carriage return and line feed. The default path is
C:\Document and Settings\All Users\Shared Documents\Infiniium\Data.

<directory> The list of filenames and directories.

Returned Format [:DISK:DIRectory]<n><NL><directory>

<n> The specifier that is returned before the directory listing, indicating the number of
lines in the listing.

<directory> The list of filenames and directories. Each line is separated by a <NL>.

Example This example displays a number, then displays a list of files and directories in the
current directory. The number indicates the number of lines in the listing.
10 DIM A$[80]
20 INTEGER Num_of_lines
30 OUTPUT 707;":DISK:DIR?"
40 ENTER 707;Num_of_lines
50 PRINT Num_of_lines
60 FOR I=1 TO Num_of_lines
70 ENTER 707;A$
80 PRINT A$
90 NEXT I
100 END
14-6

Disk Commands
LOAD
LOAD

Command :DISK:LOAD "<file_name>"[,<destination>]

The :DISK:LOAD command restores a setup or a waveform from the disk. The type
of file is determined by the filename suffix if one is present, or by the destination field
if one is not present. You can load .WFM, .CSV, .TSV, .TXT, .BIN, .H5, and .SET
file types. The destination is only used when loading a waveform memory.

<file_name> A quoted ASCII string with a maximum of 254 characters including the entire path
name, if used. You can use either .WFM, .CSV, .TSV, .TXT, .BIN, .H5, or .SET as
a suffix after the filename. If no file suffix is specified, the default is .wfm.
The present working directory is assumed, or you can specify the entire path. For
example, you can load the standard setup file "SETUP0.SET" using the command:
:DISK:LOAD "C:\Document and Settings\All Users\Shared
Documents\Infiniium\Setups\SETUP0.SET"
Or, you can use :DISK:CDIRectory to change the present working directory to
C:\Document and Settings\All Users\Shared Documents\Infiniium\Setups, then just
use the file name ("SETUP0.SET", for example). The default path is C:\Document
and Settings\All Users\Shared Documents\Infiniium\Data.

<destination> WMEMory<N>.
Where <N> is an integer from 1-4.
If a destination is not specified, waveform memory 1 is used.

Example This example restores the waveform in FILE1.WFM to waveform memory 1.
10 OUTPUT 707;":DISK:LOAD ""FILE1.WFM"",WMEM1"
20 END
14-7

Disk Commands
MDIRectory
MDIRectory

Command :DISK:MDIRectory "<directory>"

The :DISK:MDIRectory command creates a directory in the present working
directory which has been set by the :DISK:CDIRectory command. If the present
working directory has not been set by the :DISK:CDIRectory command, you must
specify the full path in the <directory> parameter as shown in Example 1 below.
An error is displayed if the requested subdirectory does not exist.

<directory> A quoted ASCII string which can include subdirectories. You must separate the
directory name and any subdirectories with a backslash (\).

Example 1 This example creates the directory CPROGRAMS in the C:\Document and
Settings\All Users\Shared Documents\Infiniium\Data directory.
10 OUTPUT 707;":DISK:MDIRECTORY ""C:\Document and Settings\All
Users\Shared Documents\Infiniium\Data\CPROGRAMS"""
20 END

Example 2 This example creates the directory CPROGRAMS in the present working directory
set by the :DISK:CDIRectory command.
10 OUTPUT 707;":DISK:MDIRECTORY ""CPROGRAMS"""
20 END

You can check your path with the :DISK:DIRectory? query.
14-8

Disk Commands
PWD?
PWD?

Query :DISK:PWD?

The :DISK:PWD? query returns the name of the present working directory (including
the full path). If the default path (C:\Document and Settings\All Users\Shared
Documents\Infiniium\Data) has not been changed by the :DISK:CDIRectory
command, the :DISK:PWD? query will return an empty string.

Returned Format :DISK:PWD? <present_working_directory><NL>

Example This example places the present working directory in the string variable Wdir?, then
prints the contents of the variable to the computer’s screen.
10 DIM Wdir$[200]
20 OUTPUT 707;":DISK:PWD?"
30 ENTER 707; Wdir$
40 PRINT Wdir$
50 END
14-9

Disk Commands
SAVE:IMAGe
SAVE:IMAGe

Command :DISK:SAVE:IMAGe “<file_name>” [,<format>
[,{SCReen | GRATicule}
[,{ON | 1} | {OFF | 0}
[,{NORMal | INVert}]]]]

The DISK:SAVE:IMAGe command saves a screen image in BMP, GIF, TIF, PNG, or
JPEG format. The extension is supplied by the oscilloscope depending on the selected
file format. If you do not include the format in the command, the file is saved in the
format which is shown in the Save Screen dialog box. The default path is
C:\Document and Settings\All Users\Shared Documents\Infiniium\Data.

ON | OFF ON means that compression is on for the bitmap format (BMP). OFF means
compression is off.

<file_name> A quoted ASCII string with a maximum of 254 characters including the entire path
name, if used.

<format> {BMP | GIF | TIF | JPEG | PNG}

Examples OUTPUT 707;":DISK:SAVE:IMAGE " "FILE1" ",BMP,SCR,ON,INVERT"
or
OUTPUT 707;":DISK:SAVE:IMAGE " "FILE1" ",TIF,GRAT,ON"
or
OUTPUT 707;":DISK:SAVE:IMAGE " "FILE1" " "
14-10

Disk Commands
SAVE:JITTer
SAVE:JITTer

Command :DISK:SAVE:JITTer “<file_name>”

The DISK:SAVE:JITTer command saves the jitter measurements shown in the RJDJ
tab at the bottom of the oscilloscope screen along with the RJDJ histograms in a
comma separated variables (CSV) file format. The csv extension is supplied by the
oscilloscope. The default path is C:\Document and Settings\All Users\Shared
Documents\Infiniium\Data.

<file_name> A quoted ASCII string with a maximum of 254 characters including the entire path
name, if used.

Example OUTPUT 707;":DISK:SAVE:JITTER ""FILE1""
14-11

Disk Commands
SAVE:LISTing
SAVE:LISTing

Command :DISK:SAVE:LISTing “<file_name>”[, {CSV | TXT}]

The DISK:SAVE:LISTing command saves the contents of the bus listing window to
a file in either a .csv or .txt format. The default path is C:\Document and Settings\All
Users\Shared Documents\Infiniium\Data.

<file_name> A quoted ASCII string with a maximum of 254 characters including the entire path
name, if used.

Example OUTPUT 707;":DISK:SAVE:LISTing ""FILE1""
14-12

Disk Commands
SAVE:MEASurements
SAVE:MEASurements

Command :DISK:SAVE:MEASurements “<file_name>”

The DISK:SAVE:MEASurements command saves the measurements shown in the
measurements tab at the bottom of the oscilloscope screen in a comma separated
variables (CSV) file format. The csv extension is supplied by the oscilloscope. The
default path is C:\Document and Settings\All Users\Shared
Documents\Infiniium\Data.

<file_name> A quoted ASCII string with a maximum of 254 characters including the entire path
name, if used.

Example OUTPUT 707;":DISK:SAVE:MEASURMENTS ""FILE1""
14-13

Disk Commands
SAVE:SETup
SAVE:SETup

Command :DISK:SAVE:SETup "<file_name>"

The :DISK:SAVE:SETup command saves the current oscilloscope setup to a disk.
The file will have a .set extension.

<file_name> A quoted ASCII string with a maximum of 254 characters including the entire path
name, if used. The filename assumes the present working directory if a path does not
precede the file name. The default path is C:\SCOPE\SETUP.

Example This example saves the channel 1 waveform to SETUP1 on the disk.
10 OUTPUT 707;":DISK:SAVE:SETUP ""SEUP1"""
20 END
14-14

Disk Commands
SAVE:WAVeform
SAVE:WAVeform

Command :DISK:SAVE:WAVeform <source>,"<file_name>"
[,<format>[,<header>]]

The :DISK:SAVE:WAVeform command saves a waveform to a disk. If the source is
ALL, all of the currently displayed waveforms are saved to the file. If you use a file
extension as shown below in the <format> variable, then the type of file saved defaults
to the extension type. If no format is specified and no extension is used, the file is
saved in the INTernal format.
See the :WAVeform:VIEW command to determine how much data is saved.

<source> {ALL | CHANnel<N> | CLOCk | COMMonmode<P> | DIFFerential<P> |
FUNCtion<N> | HISTogram | MTRend | MSPectrum | EQUalized | WMEMory<N>}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).

<N> An integer, 1 - 4

<P> An integer, 1 - 2

<file_name> A quoted ASCII string with a maximum of 254 characters including the entire path
name, if used. The filename assumes the present working directory if a path does not
precede the file name. The default path is C:\Document and Settings\All Users\Shared
Documents\Infiniium\Data.

<format> {BIN | CSV | INTernal | TSV | TXT | H5}
CSV stands for comma separated values and TSV stands for tab separated values.
The following file name extensions are used for the different formats.
14-15

Disk Commands
SAVE:WAVeform
BIN = file_name.bin
CSV = file_name.csv
INTernal = file_name.wfm
TSV = file_name.tsv
TXT = file_name.txt
H5(HDF5) = file_name.h5

<header> {{ON | 1} | {OFF | 0}}

Example This example saves the channel 1 waveform to FILE1 on the disk in the CSV format
with header on.
10 OUTPUT 707;":DISK:SAVE:WAVEFORM CHANNEL1,""FILE1"",CSV,ON"
20 END
14-16

Disk Commands
CSV and TSV Header Format
CSV and TSV Header Format

Revision Always 0 (zero).

Type How the waveform was acquired: normal, raw,
interpolate, average, or versus. When this field is
read back into the scope, all modes, except versus,
are converted to raw. The default value is raw.

Start Starting point in the waveform of the first data point
in the file. This is usually zero.

Points The number of points in the waveform record. The
number of points is set by the Memory Depth
control. The default value is 1.

Count or Segments For count, it is the number of hits at each time bucket
in the waveform record when the waveform was
created using an acquisition mode like averaging.
For example, when averaging, a count of four would
mean every waveform data point in the waveform
record has been averaged at least four times. Count
is ignored when it is read back into the scope. The
default value is 0.

Segments is used instead of Count when the data is
acquired using the Segmented acquisition mode.
This number is the total number of segments that
were acquired.

XDispRange The number of X display range columns (n) depends
on the number of sources being stored. The X
display range is the X-axis duration of the waveform
that is displayed. For time domain waveforms, it is
the duration of time across the display. If the value
is zero then no data has been acquired.
14-17

Disk Commands
CSV and TSV Header Format
XDispOrg The number of X display origin columns (n)
depends on the number of sources being stored. The
X display origin is the X-axis value at the left edge
of the display. For time domain waveforms, it is the
time at the start of the display. This value is treated
as a double precision 64-bit floating point number.
If the value is zero then no data has been acquired.

XInc The number of X increment columns (n) depends on
the number of sources being store. The X increment
is the duration between data points on the X axis.
For time domain waveforms, this is the time
between points. If the value is zero then no data has
been acquired.

XOrg The number of X origin columns (n) depends on the
number of sources being store. The X origin is the
X-axis value of the first data point in the data record.
For time domain waveforms, it is the time of the first
point. This value is treated as a double precision 64-
bit floating point number. If the value is zero then
no data has been acquired.

XUnits The number of X units columns (n) depends on the
number of sources being store. The X units is the
unit of measure for each time value of the acquired
data.

YDispRange The number of Y display range columns (n) depends
on the number of sources being store. The Y display
range is the Y-axis duration of the waveform which
is displayed. For voltage waveforms, it is the
amount of voltage across the display. If the value is
zero then no data has been acquired.

YDispOrg The number of Y display origin columns (n)
depends on the number of sources being store. The
Y-display origin is the Y-axis value at the center of
the display. For voltage waveforms, it is the voltage
at the center of the display. If the value is zero then
no data has been acquired.
14-18

Disk Commands
CSV and TSV Header Format
YInc The number of Y increment columns (n) depends on
the number of sources being store. The Y increment
is the duration between Y-axis levels. For voltage
waveforms, it is the voltage corresponding to one
level. If the value is zero then no data has been
acquired.

YOrg The number of Y origin columns (n) depends on the
number of sources being store. The Y origin is the
Y-axis value at level zero. For voltage waveforms,
it is the voltage at level zero. If the value is zero
then no data has been acquired.

YUnits The number of Y units columns (n) depends on the
number of sources being stored. The Y units is the
unit of measure of each voltage value of the acquired
waveform.

Frame A string containing the model number and serial
number of the scope in the format of
MODEL#:SERIAL#.

Date The date when the waveform was acquired. The
default value is 27 DEC 1996.

Time The time when the waveform was acquired. The
default value is 01:00:00:00.

Max bandwidth An estimation of the maximum bandwidth of the
waveform. The default value is 0.

Min bandwidth An estimation of the minimum bandwidth of the
waveform. The default value is 0.

Time Tags The Time Tags only occur when the data was
acquired using the Segmented acquisition mode
with time tags enabled and the file format is
YValues. The number of columns depends on the
number of Segments being saved.

Data The data values follow this header entry.
14-19

Disk Commands
BIN Header Format
BIN Header Format

File Header There is only one file header in a binary file. The file header consists of the following
information.

Cookie Two byte characters, AG, which indicates that the
file is in the Agilent Binary Data file format.

Version Two bytes which represent the file version.

File Size An integer (4 byte signed) which is the number of
bytes that are in the file.

Number of
Waveforms An integer (4 byte signed) which is the number of

waveforms that are stored in the file.

Waveform Header The waveform header contains information about the type of waveform data that is
stored following the waveform data header which is located after each waveform
header. Because it is possible to store more than one waveform in the file, there will
be a waveform header and a waveform data header for each waveform.

Header Size An integer (4 byte signed) which is the number of
bytes in the header.

Waveform Type An integer (4 byte signed) which is the type of
waveform that is stored in the file. The follow shows
what each value means.

0 = Unknown

1 = Normal

2 = Peak Detect

3 = Average

4 = Horizontal Histogram

5 = Vertical Histogram

6 = Logic

Number of
Waveform Buffers An integer (4 byte signed) which is the number of

waveform buffers required to read the data. This
value is one except for peak detect data and digital
data.
14-20

Disk Commands
BIN Header Format
Count An integer (4 byte signed) which is the number of
hits at each time bucket in the waveform record
when the waveform was created using an acquisition
mode like averaging. For example, when averaging,
a count of four would mean every waveform data
point in the waveform record has been averaged at
least four times. The default value is 0.

X Display Range A float (4 bytes) which is the X-axis duration of the
waveform that is displayed. For time domain
waveforms, it is the duration of time across the
display. If the value is zero then no data has been
acquired.

X Display Origin A double (8 bytes) which is the X-axis value at the
left edge of the display. For time domain
waveforms, it is the time at the start of the display.
This value is treated as a double precision 64-bit
floating point number. If the value is zero then no
data has been acquired.

X Increment A double (8 bytes) which is the duration between
data points on the X axis. For time domain
waveforms, this is the time between points. If the
value is zero then no data has been acquired.

X Origin A double (8 bytes) which is the X-axis value of the
first data point in the data record. For time domain
waveforms, it is the time of the first point. This
value is treated as a double precision 64-bit floating
point number. If the value is zero then no data has
been acquired.
14-21

Disk Commands
BIN Header Format
X Units An integer (4 byte signed) which is the number of
X units columns (n) depends on the number of
sources being stored. The X units is the unit of
measure for each time value of the acquired data. X
unit definitions are:

0 = Unkown

1 = Volt

2 = Second

3 = Constant

4 = Amp

5 = Decibel

Y Units An integer (4 byte signed) which is the number of
Y units columns (n) depends on the number of
sources being stored. The Y units is the unit of
measure of each voltage value of the acquired
waveform. Y units definitions are:

0 = Unkown

1 = Volt

2 = Second

3 = Constant

4 = Amp

5 = Decibel

Date A 16 character array which is the date when the
waveform was acquired. The default value is 27
DEC 1996.

Time A 16 character array which is the time when the
waveform was acquired. The default value is
01:00:00:00.

Frame A 24 character array which is the model number and
serial number of the scope in the format of
MODEL#:SERIAL#.

Waveform Label A 16 character array which is the waveform label.

Time Tags A double (8 bytes) which is the time tag value of the
segment being saved.
14-22

Disk Commands
BIN Header Format
Segment Index An unsigned integer (4 byte signed) which is the
segment index of the data that follows the waveform
data header.

Waveform Data
Header

The waveform data header consists of information
about the waveform data points that are stored
immediately after the waveform data header.

Waveform Data
Header Size An integer (4 byte signed) which is the size of the

waveform data header.

Buffer Type A short (2 byte signed) which is the type of
waveform data that is stored in the file. The
following shows what each value means.

0 = Unknown data

1 = Normal 32 bit float data

2 = Maximum float data

3 = Minimum float data

4 = Time float data

5 = Counts 32 bit float data

6 = Digital unsigned 8 bit char data

Bytes Per Point A short (2 byte signed) which is the number of bytes
per data point.

Buffer Size An integer (4 byte signed) which is the size of the
buffer required to hold the data bytes.
14-23

Disk Commands
BIN Header Format
Example Program for Reading Binary Data
The following is a programming example of reading a Binary Data (.bin) file and
converting it to a CSV (.csv) file without a file header.

/* bintoascii.c */

/* Reads the binary file format.
 This program demonstrates how to import the Infiniium
 oscilloscope binary file format and how to export it to an
 ascii comma seperated file format.
*/
#pragma pack(4)

#include <stdio.h> /* location of: printf() */
#include <stdlib.h> /* location of: atof(), atoi() */
#include <string.h> /* location of: strlen() */
#include "sicl.h"

/* Defines */
#define MAX_LENGTH 10000000
#define INTERFACE "lan[130.29.70.247]:inst0" /* Change the IP address
 * to the one found in
 * the Remote Setup
 * dialog box.
 */
#define TRUE 1
#define FALSE 0
#define IO_TIMEOUT 20000

/* Type definitions */
typedef unsigned _int64 UINT64; /* This defines a 64-bit unsigned
 * integer for Microsoft platforms.
 */
14-24

Disk Commands
BIN Header Format
/* Structure and Union definitions */
union DATATYPE
{
 char buffer[MAX_LENGTH]; /* Buffer for reading word format data */
 char byte[MAX_LENGTH];
 unsigned short word[MAX_LENGTH/2];
 UINT64 longlong[MAX_LENGTH/4];
};

typedef struct
{
 char Cookie[2];
 char Version[2];
 int FileSize;
 int NumberOfWaveforms;
} FileHeader;

const char COOKIE[2] = {'A', 'G'};
const char VERSION[2] = {'1', '0'};

#define DATE_TIME_STRING_LENGTH 16
#define FRAME_STRING_LENGTH 24
#define SIGNAL_STRING_LENGTH 16
14-25

Disk Commands
BIN Header Format
typedef struct
{
 int HeaderSize;
 int WaveformType;
 int NWaveformBuffers;
 int Points;
 int Count;
 float XDisplayRange;
 double XDisplayOrigin;
 double XIncrement;
 double XOrigin;
 int XUnits;
 int YUnits;
 char Date[DATE_TIME_STRING_LENGTH];
 char Time[DATE_TIME_STRING_LENGTH];
 char Frame[FRAME_STRING_LENGTH];
 char WaveformLabel[SIGNAL_STRING_LENGTH];
 double TimeTag;
 unsigned int SegmentIndex;
} WaveformHeader;

typedef struct
{
 int HeaderSize;
 short BufferType;
 short BytesPerPoint;
 int BufferSize;
} WaveformDataHeader;

typedef enum
{
 PB_UNKNOWN,
 PB_NORMAL,
 PB_PEAK_DETECT,
 PB_AVERAGE,
 PB_HORZ_HISTOGRAM,
 PB_VERT_HISTOGRAM,
 PB_LOGIC
} WaveformType;
14-26

Disk Commands
BIN Header Format
typedef enum
{
 PB_DATA_UNKNOWN,
 PB_DATA_NORMAL,
 PB_DATA_MAX,
 PB_DATA_MIN,
 PB_DATA_TIME,
 PB_DATA_COUNTS,
 PB_DATA_LOGIC
} DataType;

/* Prototypes */
void GetTimeConversionFactors(WaveformHeader waveformHeader,
 double *xInc, double *xOrg);
void OutputNormalWaveform(WaveformHeader waveformHeader);
void OutputPeakDetectWaveform(WaveformHeader waveformHeader);
void OutputHistogramWaveform(WaveformHeader waveformHeader);
void OutputData(FILE *PeakFile,
 WaveformDataHeader waveformDataHeader);

/* Globals */
double xOrg=0L, xInc=0L; /* Values necessary to create time data */
union DATATYPE WaveFormData; /* Used to input and output data */
FILE *InputFile = NULL;
FILE *OutputFile;
errno_t err;
char *buffer;
float Volts[MAX_LENGTH];
float MaxVolts[MAX_LENGTH];
float MinVolts[MAX_LENGTH];
UINT64 HistogramData[MAX_LENGTH];
14-27

Disk Commands
BIN Header Format
int main(int argc, char **argv)
{
 FileHeader fileHeader;
 WaveformHeader waveformHeader;

 if(argc > 1)
 {
 InputFile = fopen(argv[1], "rb");

 if(InputFile)
 {
 OutputFile = fopen(argv[2], "wb");

 if(OutputFile)
 {
 /* Read the File Header */
 fread(&fileHeader, 1, sizeof(FileHeader), InputFile);

 /* Make sure that this is an Agilent Binary File */
 if((fileHeader.Cookie[0] == COOKIE[0]) &&
 (fileHeader.Cookie[1] == COOKIE[1]))
 {
 fread(&waveformHeader, 1,
 sizeof(WaveformHeader), InputFile);

 switch(waveformHeader.WaveformType)
 {
 case PB_NORMAL:
 case PB_AVERAGE:
 OutputNormalWaveform(waveformHeader);
 break;
 case PB_PEAK_DETECT:
 OutputPeakDetectWaveform(waveformHeader);
 break;
 case PB_HORZ_HISTOGRAM:
 case PB_VERT_HISTOGRAM:
 OutputHistogramWaveform(waveformHeader);
 break;
 default:
14-28

Disk Commands
BIN Header Format
 case PB_UNKNOWN:
 printf("Unknown waveform type: %d\n");
 break;
 }
 }
 }
 else
 {
 printf("Unable to open output file %s\n", OutputFile);
 }
 }
 else
 {
 printf("Unable to open input file %s\n", argv[1]);
 }

 fclose(InputFile);
 fclose(OutputFile);
 }
 else
 {
 printf("Useage: bintoascii inputfile outputfile\n");
 }

}

14-29

Disk Commands
BIN Header Format
/***
 * Function name: GetTimeConversionFactors
 * Parameters: double xInc which is the time between consecutive
 * sample points.
 * double xOrg which is the time value of the first
 * data point.
 * Return value: none
 * Description: This routine transfers the waveform conversion
 * factors for the time values.
***/
void GetTimeConversionFactors(WaveformHeader waveformHeader,
 double *xInc, double *xOrg)
{

 /* Read values which are used to create time values */

 *xInc = waveformHeader.XIncrement;
 *xOrg = waveformHeader.XOrigin;

}

14-30

Disk Commands
BIN Header Format
/***
 * Function name: OutputNormalWaveform
 * Parameters: WaveformHeader *waveformHeader which is a structure
 * that contains the waveform header information.
 * Return value: none
 * Description: This routine stores the time and voltage information
 * about the waveform as time and voltage separated by
 * commas to a file.
**/
void OutputNormalWaveform(WaveformHeader waveformHeader)
{
 WaveformDataHeader waveformDataHeader;
 int done = FALSE;
 unsigned long i;
 unsigned long j = 0;
 size_t BytesRead = 0L;
 double Time;

 BytesRead = fread(&waveformDataHeader, 1,
 sizeof(WaveformDataHeader), InputFile);
 GetTimeConversionFactors(waveformHeader, &xInc, &xOrg);
 while(!done)
 {
 BytesRead = fread((char *) Volts, 1, MAX_LENGTH, InputFile);
 for(i = 0; i < (BytesRead/waveformDataHeader.BytesPerPoint); i++)
 {
 Time = (j * xInc) + xOrg; /* calculate time */
 j = j + 1;
 fprintf(OutputFile, "%e,%f\n", Time, Volts[i]);
 }
 if(BytesRead < MAX_LENGTH)
 {
 done = TRUE;
 }
 }
}

14-31

Disk Commands
BIN Header Format
/***
 * Function name: OutputHistogramWaveform
 * Parameters: WaveformHeader *waveformHeader which is a structure
 * that contains the waveform header information.
 * Return value: none
 * Description: This routine stores the time and hits information
 * as time and hits separated by commas to a file.
**/
void OutputHistogramWaveform(WaveformHeader waveformHeader)
{
 WaveformDataHeader waveformDataHeader;
 int done = FALSE;
 unsigned long i;
 unsigned long j = 0;
 size_t BytesRead = 0L;

 fread(&waveformDataHeader, 1,
 sizeof(WaveformDataHeader), InputFile);
 GetTimeConversionFactors(waveformHeader, &xInc, &xOrg);
 while(!done)
 {
 BytesRead = fread((char *) HistogramData, 1, MAX_LENGTH,
 InputFile);

 for(i = 0; i < (BytesRead/waveformDataHeader.BytesPerPoint); i++)
 {
 fprintf(OutputFile, "%d,%u64l\n", j, HistogramData[i]);
 j = j + 1;
 }
 if(BytesRead < MAX_LENGTH)
 {
 done = TRUE;
 }
 }
}

14-32

Disk Commands
BIN Header Format
/***
 * Function name: OutputData
 * Parameters: FILE *PeakFile which is the pointer to the file
 * to be written.
 * WaveformDataHeader waveformDataHeader
 * which is a structure that contains the waveform
 * header information.
 * Return value: none
 * Description: This routine stores the time, minimum voltage, and
 * maximum voltage for the peak detect waveform as comma
 * separated values to a file.
**/
void OutputData(FILE *PeakFile, WaveformDataHeader waveformDataHeader)
{
 int done = FALSE;
 size_t BytesRead = 0L;
 int NumberToRead;

 NumberToRead = waveformDataHeader.BufferSize;

 while(!done)
 {
 BytesRead = fread((char *) Volts, 1, NumberToRead, InputFile) +
 BytesRead;

 fwrite(Volts, 1, BytesRead, PeakFile);

 if(BytesRead <= NumberToRead)
 {
 done = TRUE;
 }
 }
}

14-33

Disk Commands
BIN Header Format
/***
 * Function name: OutputPeakDetectWaveform
 * Parameters: WaveformHeader waveformHeader which is a
 * structure that contains the waveform header
 * information.
 * Return value: none
 * Description: This routine stores the time, minimum voltage, and
 * maximum voltage for the peak detect waveform as comma
 * separated values to a file.
**/
void OutputPeakDetectWaveform(WaveformHeader waveformHeader)
{
 WaveformDataHeader waveformDataHeader;
 int done = FALSE;
 unsigned long i;
 unsigned long j = 0;
 size_t BytesRead = 0L;
 double Time;
 FILE *MaxFile;
 FILE *MinFile;

 fread(&waveformDataHeader, 1,
 sizeof(WaveformDataHeader), InputFile);
 GetTimeConversionFactors(waveformHeader, &xInc, &xOrg);

 MaxFile = fopen("maxdata.bin", "wb");
 MinFile = fopen("mindata.bin", "wb");

 if(MaxFile && MinFile)
 {
 if(waveformDataHeader.BufferType == PB_DATA_MAX)
 {
 OutputData(MaxFile, waveformDataHeader);
 OutputData(MinFile, waveformDataHeader);
 }
 else
 {
 OutputData(MinFile, waveformDataHeader);
 OutputData(MaxFile, waveformDataHeader);
14-34

Disk Commands
BIN Header Format
 }

 fclose(MaxFile);
 fclose(MinFile);

 MaxFile = fopen("maxdata.bin", "rb");
 MinFile = fopen("mindata.bin", "rb");

 while(!done)
 {
 BytesRead = fread((char *) MaxVolts, 1, MAX_LENGTH, MaxFile);
 fread((char *) MinVolts, 1, MAX_LENGTH, MinFile);

 for(i = 0; i < BytesRead/4; i++)
 {
 Time = (j * xInc) + xOrg; /* calculate time */
 j = j + 1;
 fprintf(OutputFile, "%9.5e,%f,%f\n", Time, MinVolts[i],
 MaxVolts[i]);
 }

 if(BytesRead < MAX_LENGTH)
 {
 done = TRUE;
 }
 }

 fclose(MaxFile);
 fclose(MinFile);
 }
14-35

SEGMented

Command :DISK:SEGMented {ALL | CURRent}

The :DISK:SEGMented command sets whether all segments or just the current
segment are saved to a file when the :DISK:SAVe:WAVeform command is issued and
the source is a channel but not a waveform memory or function. Before segments can
be saved, the :ACQuire:MODE must be set to the SEGMented mode and segments
must be acquired.

Example This example sets the disk segmented memory store method to CURRent.
10 OUTPUT 707;":DISK:SEGMENTED CURRENT”
20 END

Query :DISK:SEGMented?

The :DISK:SEGMented? query returns disk segmented memory store method value.

Returned Format [:DISK:SEGMented] {ALL | CURRent}<NL>

Example This example places the disk store method in the string variable Method$, then prints
the contents of the variable to the computer’s screen.
10 DIM Method$[200]
20 OUTPUT 707;":DISK:SEGMENTED?"
30 ENTER 707; Method$
40 PRINT Method$
50 END
14-36

Disk Commands
SEGMented
14-37

Disk Commands
SEGMented
14-38

15

Display Commands

Display Commands

The DISPlay subsystem controls the display of data, text, and graticules, and
the use of color.

These DISPlay commands and queries are implemented in the Infiniium
Oscilloscopes:

• CGRade
• CGRade:LEVels?
• COLumn
• CONNect
• DATA?
• DCOLor (Default COLor)
• GRATicule
• LABel
• LINE
• PERSistence
• ROW
• SCOLor (Set COLor)
• STRing
• :TAB
• TEXT
15-2

Display Commands
CGRade
CGRade

Command :DISPlay:CGRade {{ON | 1} | {OFF | 0}}

The :DISPlay:CGRade command sets the color grade persistence on or off.
When in the color grade persistence mode, all waveforms are mapped into a database
and shown with different colors representing varying number of hits in a pixel.
"Connected dots" display mode (:DISPlay:CONNect) is disabled when the color
grade persistence is on.
The oscilloscope has three features that use a specific database. This database uses a
different memory area than the waveform record for each channel. The three features
that use the database are histograms, mask testing, and color grade persistence. When
any one of these three features is turned on, the oscilloscope starts building the
database. The database is the size of the graticule area and varies in size. Behind
each pixel is a 53-bit counter. Each counter is incremented each time a pixel is hit by
data from a channel or function. The maximum count (saturation) for each counter
is 9,007,199,254,740,991. You can check for counter saturation by using the
DISPlay:CGRade:LEVels? query. The color grade persistence uses colors to
represent the number of hits on various areas of the display. The default color-grade
state is off.

Example This example sets the color grade persistence on.
10 OUTPUT 707;":DISPLAY:CGRADE ON"
20 END
15-3

Display Commands
CGRade
Query :DISPlay:CGRade?

The DISPlay:CGRade query returns the current color-grade state.

Returned Format [:DISPlay:CGRade] {1 | 0}<NL>

Example This example returns the current color grade state.
10 OUTPUT 707;":DISPLAY:CGRADE?"
20 ENTER 707;Cgrade$
30 PRINT Cgrade$
40 END
15-4

Display Commands
CGRade:LEVels?
CGRade:LEVels?

Query :DISPlay:CGRade:LEVels?

The :DISPlay:CGRade:LEVels? query returns the range of hits represented by each
color. Fourteen values are returned, representing the minimum and maximum count
for each of seven colors. The values are returned in the following order:
• White minimum value
• White maximum value
• Yellow minimum value
• Yellow maximum value
• Orange minimum value
• Orange maximum value
• Red minimum value
• Red maximum value
• Pink minimum value
• Pink maximum value
• Blue minimum value
• Blue maximum value
• Green minimum value
• Green maximum value

Returned Format [DISPlay:CGRade:LEVels] <color format><NL>

<color format> <intensity color min/max> is an integer value from 0 to 9,007,199,254,740,991
15-5

Display Commands
CGRade:LEVels?
Example This example gets the range of hits represented by each color and prints it on the
computer screen:
10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":DISPLAY:CGRADE:LEVELS?"
30 ENTER 707;Cgrade$
40 PRINT Cgrade$
50 END

Colors start at green minimum, maximum, then blue, pink, red, orange, yellow, white.
The format is a string where commas separate minimum and maximum values. The
largest number in the string can be 9,007,199,254,740,991

An example of a possible returned string is as follows:
1,414,415,829,830,1658,1659,3316,3317,6633,6634,13267,13268,26535
15-6

Display Commands
COLumn
COLumn

Command :DISPlay:COLumn <column_number>

The :DISPlay:COLumn command specifies the starting column for subsequent
:DISPlay:STRing and :DISPlay:LINE commands.

<column
_number>

An integer representing the starting column for subsequent :DISPlay:STRing and
:DISPlay:LINE commands. The range of values is 0 to 90.

Example This example sets the starting column for subsequent :DISPlay:STRing and
:DISPlay:LINE commands to column 10.
10 OUTPUT 707;":DISPLAY:COLUMN 10"
20 END

Query :DISPlay:COLumn?

The :DISPlay:COLumn? query returns the column where the next :DISPlay:LINE or
:DISPlay:STRing starts.

Returned Format [:DISPlay:COLumn] <value><NL>

Example This example returns the current column setting to the string variable, Setting$, then
prints the contents of the variable to the computer's screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":DISPLAY:COLUMN?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END
15-7

Display Commands
CONNect
CONNect

Command :DISPlay:CONNect {{ON | 1} | {OFF | 0}}

When enabled, :DISPlay:CONNect draws a line between consecutive waveform data
points. This is also known as linear interpolation.
 :DISPlay:CONNect is forced to OFF when color grade (:DISPlay:CGRade)
persistence is on.

Example This example turns on the connect-the-dots feature.
10 OUTPUT 707;":DISPLAY:CONNECT ON"
20 END

Query :DISPlay:CONNect?

The :DISPlay:CONNect? query returns the status of the connect-the-dots feature.

Returned Format [:DISPlay:CONNect] {1 | 0}<NL>
15-8

Display Commands
DATA?
DATA?

Query :DISPlay:DATA?
[<type>[,<screen_mode>[,<compression>
[,<inversion>]]]]

The :DISPlay:DATA? query returns information about the captured data. If no options
to the query are specified, the default selections are BMP file type, SCReen mode,
compression turned ON, and inversion set to NORMal.

<type> The bitmap type: BMP | JPG | GIF | TIF | PNG.

<screen_mode> The display setting: SCReen | GRATicule. Selecting GRATicule displays a 10-by-8
(unit) display graticule on the screen. See also :DISPlay:GRATicule.

<compression> The file compression feature: ON | OFF.

<inversion> The inversion of the displayed file: NORMal | INVert.

Returned Format [:DISPlay:DATA] <binary_block_data><NL>

<binary_block
_data>

Data in the IEEE 488.2 definite block format.
15-9

Display Commands
GRATicule
GRATicule

Commands :DISPlay:GRATicule {GRID | FRAMe}
:DISPlay:GRATicule:INTensity <intensity_value>
:DISPlay:GRATicule:NUMBer {1 | 2 | 4}
:DISPlay:GRATicule:SETGrat <DispGratChan>, <number>

The :DISPlay:GRATicule command selects the type of graticule that is displayed.
Infiniium oscilloscopes have a 10-by-8 (unit) display graticule grid GRID), a grid line
is place on each vertical and horizontal division. When it is off (FRAMe), a frame
with tic marks surrounds the graticule edges.
You can dim the grid's intensity or turn the grid off to better view waveforms that
might be obscured by the graticule lines using the :DISPlay:GRATicule:INTensity
command. Otherwise, you can use the grid to estimate waveform measurements such
as amplitude and period.
When printing, the grid intensity control does not affect the hard copy. To remove
the grid from a printed hard copy, you must turn off the grid before printing.
The :SETGrat command assigns the corresponding waveform to a specific grid on
the display. For example, :DISP:GRAT:SETG HIST, 2 would assign the histogram to
grid 2.

<intensity
_value>

A integer from 0 to 100, indicating the percentage of grid intensity.

<DispGratChan> CHN<N>, DIFF1, DIFF3, COMM2, COMM4, D<M> where M is between 0 and 31,
BUS<Y> where Y is between 1 and 4, MEM<N> where N is between 1 and 4, FN<N>
where N is between 1 and 4 (function), HIST

<number> 1-4, the number of the grid you want to assign the waveform to.

You can divide the waveform viewing area from one area into two or four separate
viewing areas using the :DISPlay:GRATicule:NUMBer command. This allows you
to separate waveforms without having to adjust the vertical position controls.

Example This example sets up the oscilloscope's display background with a frame that is
separated into major and minor divisions.
10 OUTPUT 707;":DISPLAY:GRATICULE FRAME"
20 END
15-10

Display Commands
GRATicule
Queries :DISPlay:GRATicule?
:DISPlay:GRATicule:INTensity?
:DISPlay:GRATicule:NUMBer?

The :DISPlay:GRATicule?, :DISPlay:GRATicule:INTensity?, and
DISPlay:GRATicule:NUMBer? queries return the type of graticule currently
displayed, the intensity, or the number of viewing areas, depending on the query you
request.

Returned Format [:DISPlay:GRATicule] {GRID | FRAMe}<NL>
[:DISPlay:GRATicule:INTensity] <value><NL>
[:DISPlay:GRATicule:NUMBer {1 | 2 | 4}<NL>

Example This example places the current display graticule setting in the string variable,
Setting$, then prints the contents of the variable to the computer's screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":DISPLAY:GRATICULE?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END
15-11

Display Commands
LABel
LABel

Command :DISPlay:LABel {{ON | 1} | {OFF | 0}}

The :DISPlay:LABel command turns on or off the display of analog channel labels.
Label names can be up to 6 characters long. The label name is assigned by using the
CHANnel<n>:LABel command:

Example This example turns on the display of all labels.
10 OUTPUT 707;":DISPLAY:LABEL ON"
20 END

Query :DISPlay:LABel?

The :DISPlay:LABel? query returns the current state of the labels.

Returned Format [:DISPlay:LABel] {1 | 0}<NL>

Example This example places the current label state into the string variable, Setting$, then prints
the contents of the variable to the computer's screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":DISPLAY:LABEL?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END
15-12

Display Commands
LINE
LINE

Command :DISPlay:LINE "<string_argument>"

The :DISPlay:LINE command writes a quoted string to the screen, starting at the
location specified by the :DISPlay:ROW and :DISPlay:COLumn commands. When
using the C programming language, quotation marks as shown in the example delimit
a string.

<string
_argument>

Any series of ASCII characters enclosed in quotation marks.

Example This example writes the message “Infiniium Test” to the screen, starting at the current
row and column location.
10 OUTPUT 707;":DISPLAY:LINE ""Infiniium Test"""
20 END

This example writes the message "Infiniium Test" to the screen using C. Quotation
marks are included because the string is delimited.
printf("\"Infiniium Test\"");

You may write text up to column 94. If the characters in the string do not fill the line,
the rest of the line is blanked. If the string is longer than the space available on the
current line, the excess characters are discarded.
In any case, the ROW is incremented and the COLumn remains the same. The next
:DISPlay:LINE command will write on the next line of the display. After writing the
last line in the display area, the ROW is reset to 0.
15-13

Display Commands
PERSistence
PERSistence

Command :DISPlay:PERSistence {MINimum | INFinite}

The :DISPlay:PERSistence command sets the display persistence. It works in both
real time and equivalent time modes. The parameter for this command can be either
MINimum (zero persistence) or INFinite

Example This example sets the persistence to infinite.
10 OUTPUT 707;":DISPLAY:PERSISTENCE INFINITE"
20 END

Query :DISPlay:PERSistence?

The :DISPlay:PERSistence? query returns the current persistence value.

Returned Format [:DISPlay:PERSistence] {MINimum | INFinite}<NL>

Example This example places the current persistence setting in the string variable, Setting$,
then prints the contents of the variable to the computer's screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":DISPLAY:PERSISTENCE?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END
15-14

Display Commands
ROW
ROW

Command :DISPlay:ROW <row_number>

The :DISPlay:ROW command specifies the starting row on the screen for subsequent
:DISPlay:STRing and :DISPlay:LINE commands. The row number remains constant
until another :DISPlay:ROW command is received, or the row is incremented by the
:DISPlay:LINE command.

<row_number> An integer representing the starting row for subsequent :DISPlay:STRing and
:DISPlay:LINE commands. The range of values is 9 to 23.

Example This example sets the starting row for subsequent :DISPlay:STRing and
:DISPlay:LINE commands to 10.
10 OUTPUT 707;":DISPLAY:ROW 10"
20 END

Query :DISPlay:ROW?

The :DISPlay:ROW? query returns the current value of the row.

Returned Format [:DISPlay:ROW] <row_number><NL>

Example This example places the current value for row in the string variable, Setting$, then
prints the contents of the variable to the computer's screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":DISPLAY:ROW?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END
15-15

Display Commands
SCOLor
SCOLor

Command :DISPlay:SCOLor <color_name>, <hue>, <saturation>,
<luminosity>

The :DISPlay:SCOLor command sets the color of the specified display element. The
display elements are described in Table 15-1.

<color_name> {CGLevel1 | CGLevel2 | CGLevel3 | CGLevel4 |
CGLevel5 | CGLevel6 | CGLevel7 | CHANnel1 |
CHANnel2 | CHANnel3 | CHANnel4 | DBACkgrnd | GRID |
MARKers | MEASurements | MICons | MTPolygons |
STEXt | WBACkgrnd | TINPuts | WOVerlap | TSCale |
WMEMories | WINText | WINBackgrnd}

Table 15-1 Color Names

Color Name Definition

CGLevel1 Color Grade Level 1 waveform display element.

CGLevel2 Color Grade Level 2 waveform display element.

CGLevel3 Color Grade Level 3 waveform display element.

CGLevel4 Color Grade Level 4 waveform display element.

CGLevel5 Color Grade Level 5 waveform display element.

CGLevel6 Color Grade Level 6 waveform display element.

CGLevel7 Color Grade Level 7 waveform display element.

CHANnel1 Channel 1 waveform display element.

CHANnel2 Channel 2 waveform display element.

CHANnel3 Channel 3 waveform display element.

CHANnel4 Channel 4 waveform display element.

DBACkgrnd Display element for the border around the outside of the waveform
viewing area.

GRID Display element for the grid inside the waveform viewing area.

MARKers Display element for the markers.

MEASurements Display element for the measurements text.

MICons Display element for measurement icons to the left of the waveform
viewing area.
15-16

Display Commands
SCOLor
<hue> An integer from 0 to 100. The hue control sets the color of the chosen display element.
As hue is increased from 0%, the color changes from red, to yellow, to green, to blue,
to purple, then back to red again at 100% hue. For color examples, see the sample
color settings table in the Infiniium Oscilloscope online help file. Pure red is 100%,
pure blue is 67%, and pure green is 33%.

<saturation> An integer from 0 to 100. The saturation control sets the color purity of the chosen
display element. The saturation of a color is the purity of a color, or the absence of
white. A 100% saturated color has no white component. A 0% saturated color is pure
white.

<luminosity> An integer from 0 to 100. The luminosity control sets the color brightness of the
chosen display element. A 100% luminosity is the maximum color brightness. A 0%
luminosity is pure black.

Example This example sets the hue to 50, the saturation to 70, and the luminosity to 90 for the
markers.
10 OUTPUT 707;":DISPLAY:SCOLOR MARKERS,50,70,90"
20 END

STEXt Display element for status messages displayed in the upper left corner
of the display underneath the menu bar. Changing this changes the
memory bar’s color.

WBACkgrnd Display element for the waveform viewing area’s background.

TINPuts Display element for line and aux trig colors.

WOVerlap Display element for waveforms when they overlap each other.

TSCale Display element for horizontal scale and offset control text.

WMEMories Display element for waveform memories.

WINText Display element used in dialog box controls and pull-down menus.

WINBackgrnd Display element for the background color used in dialog boxes and
buttons.

Color Name Definition
15-17

Display Commands
SCOLor
Query :DISPlay:SCOLor? <color_name>

The :DISPlay:SCOLor? query returns the hue, saturation, and luminosity for the
specified color.

Returned Format [:DISPlay:SCOLor] <color_name>, <hue>, <saturation>,
<luminosity><NL>

Example This example places the current settings for the graticule color in the string variable,
Setting$, then prints the contents of the variable to the computer's screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":DISPLAY:SCOLOR? GRATICULE"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END
15-18

Display Commands
STRing
STRing

Command :DISPlay:STRing "<string_argument>"

The :DISPlay:STRing command writes text to the oscilloscope screen. The text is
written starting at the current row and column settings. If the column limit is reached,
the excess text is discarded. The :DISPlay:STRing command does not increment the
row value, but :DISPlay:LINE does.

<string
_argument>

Any series of ASCII characters enclosed in quotation marks.

Example This example writes the message “Example 1” to the oscilloscope's display starting
at the current row and column settings.
10 OUTPUT 707;":DISPLAY:STRING ""Example 1"""
20 END
15-19

Display Commands
TAB
TAB

Command :DISPlay:TAB <tab>

The :DISPlay:TAB command displays the corresponding tab indicated by the <tab>
parameter.

<tab> MEASurement | MARKer | DIGital | LIMittest | JITTr | HISTogram | MASKtest |
EYE | COLorgrade | NAVigtation | STATus | SCALe

Example This example sets the color grade persistence on.
10 OUTPUT 707;":DISPLAY:CGRADE ON"
20 END
15-20

Display Commands
TEXT
TEXT

Command :DISPlay:TEXT BLANk

The :DISPlay:TEXT command blanks the user text area of the screen.

Example This example blanks the user text area of the oscilloscope's screen.
10 OUTPUT 707;":DISPLAY:TEXT BLANK"
20 END
15-21

Display Commands
TEXT
15-22

16

Function Commands

16-2

Function Commands

The FUNCtion subsystem defines functions 1 - 4. The operands of these
functions can be any of the installed channels in the oscilloscope, waveform
memories 1 - 4, functions 1 - 4, differential channels 1 or 2, common mode
channels 1 or 2, or a constant. These FUNCtion commands and queries are
implemented in the Infiniium Oscilloscopes:

You can control the vertical scaling and offset functions remotely using the
RANGe and OFFSet commands in this subsystem. You can obtain the
horizontal scaling and position values of the functions using the
:HORizontal:RANge? and :HORizontal:POSition? queries in this subsystem.

If a channel is not on but is used as an operand, that channel will acquire
waveform data.

If the operand waveforms have different memory depths, the function uses
the shorter of the two.

• FUNCtion<N>?
• ABSolute
• ADD
• AVERage
• COMMonmode
• DIFF (Differentiate)
• DISPlay
• DIVide
• FFT:FREQuency
• FFT:RESolution?
• FFT:WINDow
• FFTMagnitude
• FFTPhase
• HIGHpass
• HORizontal
• HORizontal:POSition
• HORizontal:RANGe

• INTegrate
• INVert
• LOWPass
• MAGNify
• MAXimum
• MINimum
• MULTiply
• OFFSet
• RANGe
• SMOoth
• SQRT
• SQUare
• SUBTract
• VERSus
• VERTical
• VERTical:OFFset
• VERTical:RANGe

16-3

If the two operands have the same time scales, the resulting function has the
same time scale. If the operands have different time scales, the resulting
function has no valid time scale. This is because operations are performed
based on the displayed waveform data position, and the time relationship of
the data records cannot be considered. When the time scale is not valid, delta
time pulse parameter measurements have no meaning, and the unknown result
indicator is displayed on the screen.

Constant operands take on the same time scale as the associated waveform
operand.

16-4

Function Commands
FUNCtion<N>?

FUNCtion<N>?

Query :FUNCtion<N>?

The :FUNCtion<N>? query returns the currently defined source(s) for the function.

Returned Format [:FUNCtion<N>:<operator>] {<operand>[,<operand>]}<NL>

<N> An integer, 1 - 4, representing the selected function.

<operator> Active math operation for the selected function. For example, ADD, AVERage,
COMMonmode, DIFF, DIVide, FFTMagnitude, FFTPhase, HIGHpass, INTegrate,
INVert, LOWPass, MAGNify, MAXimum, MINimum, MULTiply, SMOoth,
SUBTract, or VERSus.

<operand> Any allowable source for the selected FUNCtion, including channels, differential
channels, common mode channels. waveform memories 1-4, and functions 1-4. If
the function is applied to a constant, the source returns the constant.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).
The channel number is an integer, 1 - 4.

Example This example returns the currently defined source for function 1.
10 OUTPUT 707;":FUNCTION1?"
20 END

If the headers are off (see :SYSTem:HEADer), the query returns only the operands,
not the operator.
10 :SYST:HEAD ON
20 :FUNC1:ADD CHAN1,CHAN2
30 :FUNC1? !returns :FUNC1:ADD CHAN1,CHAN2
40 :SYST:HEAD OFF
50 :FUNC1? !returns CHAN1,CHAN2

16-5

Function Commands
ABSolute

ABSolute

Command :FUNCtion<N>:ABSolute <operand>

The :FUNCtion<N>:ABSolute command takes the absolute value an operand.

<operand> {CHANnel<N> | FUNCtion<N> | WMEMory<N> | DIFFerential<P> |
COMMonmode<P>}

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:
An integer, 1 - 4, representing the selected function or waveform memory.

<P> An integer, 1 - 2.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).

Example This example turns on the absolute value command using channel 3.
10 OUTPUT 707;"MEASURE:ABSOLUTE CHANNEL3"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-6

Function Commands
ADD

ADD

Command :FUNCtion<N>:ADD <operand>,<operand>

The :FUNCtion<N>:ADD command defines a function that takes the algebraic sum
of the two operands.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | DIFFerential<P> | COMMonmode<P> | FUNCtion<n> |
WMEMory<n> | <float_value>}
CHANnel<n> is an integer, 1 - 4.
FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<P> An integer, 1 - 2.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).
<float_value> is:

A real number from -1E6 to 1E12.

Example This example sets up function 1 to add channel 1 to channel 2.
10 OUTPUT 707;":FUNCTION1:ADD CHANNEL1,CHANNEL2"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-7

Function Commands
AVERage

AVERage

Command :FUNCtion<N>:AVERage <operand>[,<averages>]

The :FUNCtion<N>:AVERage command defines a function that averages the operand
based on the number of specified averages.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | DIFFerential<P> | COMMonmode<P> | FUNCtion<n> |
WMEMory<n> | <float_value>}
CHANnel<n> is an integer, 1 - 4.
FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<P> An integer, 1 - 2.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).
<float_value> is:

A real number from -1E6 to 1E12.

<averages> An integer, 2 to 65534 specifying the number of waveforms to be averaged

Example This example sets up function 1 to average channel 1 using 16 averages.
10 OUTPUT 707;":FUNCTION1:AVERAGE CHANNEL1,16"
20 END

16-8

Function Commands
AVERage

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-9

Function Commands
COMMonmode

COMMonmode

Command :FUNCtion<N>:COMMonmode <operand>,<operand>

The :FUNCtion<N>:COMMonmode command defines a function that adds the
voltage values of the two operands and divides by 2, point by point.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | DIFFerential<P> | COMMonmode<P> | FUNCtion<n> |
WMEMory<n> | <float_value>}
CHANnel<n> is an integer, 1 - 4.
FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<P> An integer, 1 - 2.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).
<float_value> is:

A real number from -1E6 to 1E12.

Example This example sets up function 1 to view the common mode voltage value of channel
1 and channel 2.
10 OUTPUT 707;":FUNCTION1:COMMONMODE CHANNEL1,CHANNEL2"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-10

Function Commands
DIFF (Differentiate)

DIFF (Differentiate)

Command :FUNCtion<N>:DIFF
<operand>[,<low_pass_phase_align>}

The :FUNCtion<N>:DIFF command defines a function that computes the discrete
derivative of the operand.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | DIFFerential<P> | COMMonmode<P> | FUNCtion<n> |
WMEMory<n> | <float_value>}
CHANnel<n> is an integer, 1 - 4.
FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<P> An integer, 1 - 2.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).
<float_value> is:

A real number from -1E6 to 1E12.

<low_pass_phase
_align>

{{ON | 1} | {OFF | 0}
This parameter turns on or off the low pass and phase align filter.

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-11

Function Commands
DIFF (Differentiate)

Example This example sets up function 2 to take the discrete derivative of the waveform on
channel 2.
10 OUTPUT 707;":FUNCTION2:DIFF CHANNEL2"
20 END

16-12

Function Commands
DISPlay

DISPlay

Command :FUNCtion<N>:DISPlay {{ON|1} | {OFF|0}}

The :FUNCtion<N>:DISPlay command either displays the selected function or
removes it from the display.

<N> An integer, 1 - 4, representing the selected function.

Example This example turns function 1 on.
10 OUTPUT 707;":FUNCTION1:DISPLAY ON"
20 END

Query :FUNCtion<N>:DISPlay?

The :FUNCtion<N>:DISPlay? query returns the displayed status of the specified
function.

Returned Format [:FUNCtion<N>:DISPlay] {1|0}<NL>

Example This example places the current state of function 1 in the variable, Setting, then prints
the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"
20 OUTPUT 707;":FUNCTION1:DISPLAY?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

16-13

Function Commands
DIVide

DIVide

Command :FUNCtion<N>:DIVide <operand>,<operand>

The :FUNCtion<N>:DIVide command defines a function that divides the first
operand by the second operand.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | DIFFerential<P> | COMMonmode<P> | FUNCtion<n> |
WMEMory<n> | <float_value>}
CHANnel<n> is an integer, 1 - 4.
FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<P> An integer, 1 - 2.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).

<float_value> is: A real number from -1E6 to 1E12.

Example This example sets up function 2 to divide the waveform on channel 1 by the waveform
in waveform memory 4.
10 OUTPUT 707;":FUNCTION2:DIVIDE CHANNEL1,WMEMORY4"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-14

Function Commands
FFT:FREQuency

FFT:FREQuency

Command :FUNCtion<N>:FFT:FREQuency <center_frequency_value>

The :FUNCtion<N>:FFT:FREQuency command sets the center frequency for the
FFT when :FUNCtion<N>:FFTMagnitude is defined for the selected function.

<N> An integer, 1 - 4, representing the selected function.

<center
_frequency

_value> A real number for the value in Hertz, from -1E12 to 1E12.

Query :FUNCtion<N>:FFT:FREQuency?

The :FUNCtion<N>:FFT:FREQuency? query returns the center frequency value.

Returned Format [FUNCtion<N>:FFT:FREQuency] <center_frequency_value><NL>

16-15

Function Commands
FFT:REFerence

FFT:REFerence

Command :FUNCtion<N>:FFT:REFerence {DISPlay | TRIGger}

The :FUNCtion<N>:FFT:REFerence command sets the reference point for
calculating the FFT phase function.

<N> An integer, 1 - 4, representing the selected function.

Example This example sets the reference point to DISPlay.
10 OUTPUT 707;":FUNCTION<N>:FFT:REFERENCE DISPLAY
20 END

Query :FUNCtion<N>:FFT:REFerence?

The :FUNCtion<N>:FFT:REFerence? query returns the currently selected reference
point for the FFT phase function.

Returned Format [:FUNCtion<N>:FFT:REFerence] {DISPlay | TRIGger}<NL>

Example This example places the current state of the function 1 FFT reference point in the
string variable, REF?, then prints the contents of the variable to the computer's screen.
10 DIM REF$[50]
20 OUTPUT 707;":FUNCTION1:FFT:REFERENCE?"
30 ENTER 707;REF$
40 PRINT REF$
50 END

16-16

Function Commands
FFT:RESolution?

FFT:RESolution?

Query :FUNCtion<N>:FFT:RESolution?

The :FUNCtion<N>:FFT:RESolution? query returns the current resolution of the FFT
function.

Returned Format [FUNCtion<N>:FFT:RESolution] <resolution_value><NL>

<N> An integer from 1 to 4 representing the selected function.

<resolution
_value> Resolution frequency.

The FFT resolution is determined by the sample rate and memory depth settings. The
FFT resolution is calculated using the following equation:

FFT Resolution = Sample Rate / Effective Memory Depth
The effective memory depth is the highest power of 2 less than or equal to the number
of sample points across the display. The memory bar in the status area at the top of
the display indicates how much of the actual memory depth is across the display.

16-17

Function Commands
FFT:WINDow

FFT:WINDow

Command :FUNCtion<N>:FFT:WINDow {RECTangular | HANNing |
FLATtop}

The :FUNCtion<N>:FFT:WINDow command sets the window type for the FFT
function.
The FFT function assumes that the time record repeats. Unless there is an integral
number of cycles of the sampled waveform in the record, a discontinuity is created at
the beginning of the record. This introduces additional frequency components into
the spectrum about the actual peaks, which is referred to as spectral leakage. To
minimize spectral leakage, windows that approach zero smoothly at the beginning
and end of the record are employed as filters to the FFTs. Each window is useful for
certain classes of input waveforms.
• The RECTangular window is essentially no window, and all points are multiplied

by 1. This window is useful for transient waveforms and waveforms where there
are an integral number of cycles in the time record.

• The HANNing window is useful for frequency resolution and general purpose use.
It is good for resolving two frequencies that are close together, or for making
frequency measurements.

• The FLATtop window is best for making accurate amplitude measurements of
frequency peaks.

<N> An integer, 1 - 4, representing the selected function. This command presently selects
all functions, regardless of which integer (1-4) is passed.

Example This example sets the window type for the FFT function to RECTangular.
10 OUTPUT 707;":FUNCTION<N>:FFT:WINDOW RECTANGULAR
20 END

16-18

Function Commands
FFT:WINDow

Query :FUNCtion<N>:FFT:WINDow?

The :FUNCtion<N>:FFT:WINDow? query returns the current selected window for
the FFT function.

Returned Format [:FUNCtion<N>:FFT:WINDow] {RECTangular | HANNing |
FLATtop}<NL>

Example This example places the current state of the function 1 FFT window in the string
variable, WND?, then prints the contents of the variable to the computer's screen.
10 DIM WND$[50]
20 OUTPUT 707;":FUNCTION1:FFT:WINDOW?"
30 ENTER 707;WND$
40 PRINT WND$
50 END

16-19

Function Commands
FFTMagnitude

FFTMagnitude

Command :FUNCtion<N>:FFTMagnitude <operand>

The :FUNCtion<N>:FFTMagnitude command computes the Fast Fourier Transform
(FFT) of the specified channel, function, or memory. The FFT takes the digitized
time record and transforms it to magnitude and phase components as a function of
frequency.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | DIFFerential<P> | COMMonmode<P> | FUNCtion<n> |
WMEMory<n> | <float_value>}
CHANnel<n> is an integer, 1 - 4.
FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<P> An integer, 1 - 2.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).

<float_value> is:
A real number from -1E6 to 1E12.

Example This example sets up function 1 to compute the FFT of waveform memory 3.
10 OUTPUT 707;":FUNCTION1:FFTMAGNITUDE WMEMORY3"
20 END

16-20

Function Commands
FFTMagnitude

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-21

Function Commands
FFTPhase

FFTPhase

Command :FUNCtion<N>:FFTPhase <source>

The :FUNCtion<N>:FFTPhase command computes the Fast Fourier Transform
(FFT) of the specified channel, function, or waveform memory. The FFT takes the
digitized time record and transforms it into magnitude and phase components as a
function of frequency.

<N> An integer, 1 - 4, representing the selected function.

<source> {CHANnel<n> | DIFFerential<P> | COMMonmode<P> | FUNCtion<n> |
WMEMory<n> | <float_value>}
CHANnel<n> is an integer, 1 - 4.
FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<P> An integer, 1 - 2.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).

<float_value> is:
A real number from -1E6 to 1E12.

Example This example sets up function 1 to compute the FFT of waveform memory 3.
10 OUTPUT 707;":FUNCTION1:FFTPHASE WMEMORY3"
20 END

16-22

Function Commands
FFTPhase

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-23

Function Commands
HIGHpass

HIGHpass

Command :FUNCtion<N>:HIGHpass <source>,<bandwidth>

The :FUNCtion<N>:HIGHpass command applies a single-pole high pass filter to the
source waveform. The bandwidth that you set is the 3 dB bandwidth of the filter.

<N> An integer, 1 - 4, representing the selected function.

<source> {CHANnel<n> | DIFFerential<P> | COMMonmode<P> | FUNCtion<n> |
WMEMory<n>}
CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:
An integer, 1 - 4, representing the selected function or waveform memory.

<P> An integer, 1 - 2.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).

<bandwidth> A real number in the range of 50 to 50E9.

Example This example sets up function 2 to compute a high pass filter with a bandwidth of 1
MHz.
10 OUTPUT 707;":FUNCTION2:HIGHPASS CHANNEL4,1E6"
20 END

16-24

Function Commands
HORizontal

HORizontal

Command :FUNCtion<N>:HORizontal {AUTO | MANual}

The :FUNCtion<N>:HORizontal command sets the horizontal tracking to either
AUTO or MANual.
The HORizontal command also includes the following commands and queries, which
are described on the following pages:
• POSition
• RANGe

<N> An integer, 1 - 4, representing the selected function.

Query :FUNCtion<N>:HORizontal?

The :FUNCtion<N>:HORizontal? query returns the current horizontal scaling mode
of the specified function.

Returned Format [:FUNCtion<N>:HORizontal] {AUTO | MANual}<NL>

Example This example places the current state of the function 1 horizontal tracking in the string
variable, Setting$, then prints the contents of the variable to the computer's screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":FUNCTION1:HORIZONTAL?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

16-25

Function Commands
HORizontal:POSition

HORizontal:POSition

Command :FUNCtion<N>:HORizontal:POSition <position_value>

The :FUNCtion<N>:HORizontal:POSition command sets the time value at center
screen for the selected function. If the oscilloscope is not already in manual mode
when you execute this command, it puts the oscilloscope in manual mode.
When you select :FUNCtion<N>:FFTMagnitude, the horizontal position is
equivalent to the center frequency. This also automatically selects manual mode.

<N> An integer, 1 - 4, representing the selected function.

<position
_value> A real number for the position value in time, in seconds, from -10E15 to 10E15.

Query :FUNCtion<N>:HORizontal:POSition?

The :FUNCtion<N>:HORizontal:POSition? query returns the current time value at
center screen of the selected function.

Returned Format [:FUNCtion<N>:HORizontal:POSition] <position><NL>

Example This example places the current horizontal position setting for function 2 in the
numeric variable, Value, then prints the contents to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":FUNCTION2:HORIZONTAL:POSITION?"
30 ENTER 707;Value
40 PRINT Value
50 END

16-26

Function Commands
HORizontal:RANGe

HORizontal:RANGe

Command :FUNCtion<N>:HORizontal:RANGe <range_value>

The :FUNCtion<N>:HORizontal:RANGe command sets the current time range for
the specified function. This automatically selects manual mode.

<N> An integer, 1 - 4, representing the selected function.

<range_value> A real number for the width of screen in current X-axis units (usually seconds), from
-100E-15 to 100E15.

Query :FUNCtion<N>:HORizontal:RANGe?

The :FUNCtion<N>:HORizontal:RANGe? query returns the current time range
setting of the specified function.

Returned Format [:FUNCtion<N>:HORizontal:RANGe] <range><NL>

Example This example places the current horizontal range setting of function 2 in the numeric
variable, Value, then prints the contents to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":FUNCTION2:HORIZONTAL:RANGE?"
30 ENTER 707;Value
40 PRINT Value
50 END

16-27

Function Commands
INTegrate

INTegrate

Command :FUNCtion<N>:INTegrate <operand>

The :FUNCtion<N>:INTegrate command defines a function that computes the
integral of the specified operand's waveform.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | DIFFerential<P> | COMMonmode<P> | FUNCtion<n> |
WMEMory<n> | <float_value>}
CHANnel<n> is an integer, 1 - 4.
FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<P> An integer, 1 - 2.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).

<float_value> is:
A real number from -1E6 to 1E12.

Example This example sets up function 1 to compute the integral of
waveform memory 3.
10 OUTPUT 707;":FUNCTION1:INTEGRATE WMEMORY3"
20 END

16-28

Function Commands
INTegrate

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-29

Function Commands
INVert

INVert

Command :FUNCtion<N>:INVert <operand>

The :FUNCtion<N>:INVert command defines a function that inverts the defined
operand's waveform by multiplying by -1.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | DIFFerential<P> | COMMonmode<P> | FUNCtion<n> |
WMEMory<n> | <float_value>}
CHANnel<n> is an integer, 1 - 4.
FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<P> An integer, 1 - 2.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).

<float_value> is:
A real number from -1E6 to 1E12.

Example This example sets up function 2 to invert the waveform on channel 1.
10 OUTPUT 707;":FUNCTION2:INVERT CHANNEL1"
20 END

16-30

Function Commands
INVert

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-31

Function Commands
LOWPass

LOWPass

Command :FUNCtion<N>:LOWPass <source>,<bandwidth>

The :FUNCtion<N>:LOWPass command applies a 4th order Bessel-Thompson pass
filter to the source waveform. The bandwidth that you set is the 3 dB bandwidth of
the filter.

<N> An integer, 1 - 4, representing the selected function.

<source> {CHANnel<n> | DIFFerential<P> | COMMonmode<P> | FUNCtion<n> |
WMEMory<n>}
CHANnel<n> is:

An integer, 1 - 2, for two channel Infiniium Oscilloscopes.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

FUNCtion<n> and WMEMory<n> are:
An integer, 1 - 4, representing the selected function or waveform memory.

<P> An integer, 1 - 2.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).

<bandwidth> A real number in the range of 50 to 50E9.

Example This example sets up function 2 to compute a low pass filter with a bandwidth of 1
MHz.
10 OUTPUT 707;":FUNCTION2:LOWPASS CHANNEL4,1E6"
20 END

16-32

Function Commands
MAGNify

MAGNify

Command :FUNCtion<N>:MAGNify <operand>

The :FUNCtion<N>:MAGNify command defines a function that is a copy of the
operand. The magnify function is a software magnify. No hardware settings are
altered as a result of using this function. It is useful for scaling channels, another
function, or memories with the RANGe and OFFSet commands in this subsystem.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | DIFFerential<P> | COMMonmode<P> | FUNCtion<n> |
WMEMory<n> | <float_value>}
CHANnel<n> is an integer, 1 - 4.
FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<P> An integer, 1 - 2.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).

<float_value> is:
A real number from -1E6 to 1E12.

Example This example creates a function (function 1) that is a magnified version of channel 1.
10 OUTPUT 707;":FUNCTION1:MAGNIFY CHANNEL1"
20 END

16-33

Function Commands
MAGNify

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-34

Function Commands
MAXimum

MAXimum

Command :FUNCtion<N>:MAXimum <operand>

The :FUNCtion<N>:MAXmum command defines a function that computes the
maximum of each time bucket for the defined operand's waveform.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | DIFFerential<P> | COMMonmode<P> | FUNCtion<n> |
WMEMory<n> | <float_value>}
CHANnel<n> is an integer, 1 - 4.
FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<P> An integer, 1 - 2.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).

<float_value> is:
A real number from -1E6 to 1E12.

Example This example sets up function 2 to compute the maximum of each time bucket for
channel 4.
10 OUTPUT 707;":FUNCTION2:MAXIMUM CHANNEL4"
20 END

16-35

Function Commands
MAXimum

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-36

Function Commands
MINimum

MINimum

Command :FUNCtion<N>:MINimum <operand>

The :FUNCtion<N>:MINimum command defines a function that computes the
minimum of each time bucket for the defined operand's waveform.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | DIFFerential<P> | COMMonmode<P> | FUNCtion<n> |
WMEMory<n> | <float_value>}
CHANnel<n> is an integer, 1 - 4.
FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<P> An integer, 1 - 2.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).

<float_value> is:
A real number from -1E6 to 1E12.

Example This example sets up function 2 to compute the minimum of each time bucket for
channel 4.
10 OUTPUT 707;":FUNCTION2:MINIMUM CHANNEL4"
20 END

16-37

Function Commands
MINimum

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-38

Function Commands
MULTiply

MULTiply

Command :FUNCtion<N>:MULTiply <operand>,<operand>

The :FUNCtion<N>:MULTiply command defines a function that algebraically
multiplies the first operand by the second operand.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | DIFFerential<P> | COMMonmode<P> | FUNCtion<n> |
WMEMory<n> | <float_value>}
CHANnel<n> is an integer, 1 - 4.
FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<P> An integer, 1 - 2.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).

<float_value> is:
A real number from -1E6 to 1E12.

Example This example defines a function that multiplies channel 1 by waveform memory 1.
10 OUTPUT 707;":FUNCTION1:MULTIPLY CHANNEL1,WMEMORY1"
20 END

16-39

Function Commands
MULTiply

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-40

OFFSet

Command :FUNCtion<N>:OFFSet <offset_value>

The :FUNCtion<N>:OFFSet command sets the voltage represented at the center of
the screen for the selected function. This automatically changes the mode from auto
to manual.

<N> An integer, 1 - 4, representing the selected function.

<offset_value> A real number for the vertical offset in the currently selected Y-axis units (normally
volts). The offset value is limited to being within the vertical range that can be
represented by the function data.

Example This example sets the offset voltage for function 1 to 2 mV.
10 OUTPUT 707;":FUNCTION1:OFFSET 2E-3"
20 END

Query :FUNCtion<N>:OFFSet?

The :FUNCtion<N>:OFFSet? query returns the current offset value for the selected
function.

Returned Format [:FUNCtion<N>:OFFSet] <offset_value><NL>

Example This example places the current setting for offset on function 2 in the numeric variable,
Value, then prints the result to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":FUNCTION2:OFFSET?"
30 ENTER 707;Value
40 PRINT Value
50 END

16-41

Function Commands
RANGe

RANGe

Command :FUNCtion<N>:RANGe <full_scale_range>

The :FUNCtion<N>:RANGe command defines the full-scale vertical axis of the
selected function. This automatically changes the mode from auto to manual.

<N> An integer, 1 - 4, representing the selected function.

<full_scale
_range> A real number for the full-scale vertical range, from -100E15 to 100E15.

Example This example sets the full-scale range for function 1 to 400 mV.
10 OUTPUT 707;":FUNCTION1:RANGE 400E-3"
20 END

Query :FUNCtion<N>:RANGe?

The :FUNCtion<N>:RANGe? query returns the current full-scale range setting for
the specified function.

Returned Format [:FUNCtion<N>:RANGe] <full_scale_range><NL>

Example This example places the current range setting for function 2 in the numeric variable
“Value,” then prints the contents to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":FUNCTION2:RANGE?"
30 ENTER 707;Value
40 PRINT Value
50 END

16-42

Function Commands
SMOoth

SMOoth

Command :FUNCtion<N>:SMOoth <operand>[,<points>]

The :FUNCtion<N>:SMOoth command defines a function that assigns the smoothing
operator to the operand with the number of specified smoothing points.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | DIFFerential<P> | COMMonmode<P> | FUNCtion<n> |
WMEMory<n> | <float_value>}
CHANnel<n> is an integer, 1 - 4.
FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<P> An integer, 1 - 2.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).

<float_value> is:
A real number from -1E6 to 1E12

<points> An integer, odd numbers from 3 to 4001 specifying the number of smoothing
points.

Example This example sets up function 1 using assigning smoothing operator to channel 1 using
5 smoothing points.
10 OUTPUT 707;":FUNCTION1:SMOOTH CHANNEL1,5"
20 END

16-43

Function Commands
SMOoth

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-44

Function Commands
SQRT

SQRT

Command :FUNCtion<N>:SQRT <operand>

The :FUNCtion<N>:SQRT command takes the square root of the operand.

<operand> {CHANnel<N> | DIFFerential<P> | COMMonmode<P> | FUNCtion<N> |
WMEMory<N>}

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory

<P> An integer, 1 - 2.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels)..

Example This example turns on the square root function using channel 3.
10 OUTPUT 707;"MEASURE:SQRT CHANNEL3"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-45

Function Commands
SQUare

SQUare

Command :FUNCtion<N>:SQUare <operand>

The :FUNCtion<N>:SQUare command takes the square value of the operand.

<operand> {CHANnel<N> | DIFFerential<P> | COMMonmode<P> | FUNCtion<N> |
WMEMory<N>}

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory

<P> An integer, 1 - 2.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels)..

Example This example turns on the square value command using channel 3.
10 OUTPUT 707;"MEASURE:SQUARE CHANNEL3"
20 END

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-46

Function Commands
SUBTract

SUBTract

Command :FUNCtion<N>:SUBTract <operand>,<operand>

The :FUNCtion<N>:SUBTract command defines a function that algebraically
subtracts the second operand from the first operand.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | DIFFerential<P> | COMMonmode<P> | FUNCtion<n> |
WMEMory<n> | <float_value>}
CHANnel<n> is an integer, 1 - 4.
FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<P> An integer, 1 - 2.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).

<float_value> is:
A real number from -1E6 to 1E12.

Example This example defines a function that subtracts waveform memory 1 from channel 1.
10 OUTPUT 707;":FUNCTION1:SUBTRACT CHANNEL1,WMEMORY1"
20 END

16-47

Function Commands
SUBTract

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-48

Function Commands
VERSus

VERSus

Command :FUNCtion<N>:VERSus <operand>,<operand>

The :FUNCtion<N>:VERSus command defines a function for an X-versus-Y display.
The first operand defines the Y axis and the second defines the X axis. The Y-axis
range and offset are initially equal to that of the first operand, and you can adjust them
with the RANGe and OFFSet commands in this subsystem.

<N> An integer, 1 - 4, representing the selected function.

<operand> {CHANnel<n> | DIFFerential<P> | COMMonmode<P> | FUNCtion<n> |
WMEMory<n> | <float_value>}
CHANnel<n> is an integer, 1 - 4.
FUNCtion<n> and WMEMory<n> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<P> An integer, 1 - 2.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).

<float_value> is:
A real number from -1E6 to 1E12.

Example This example defines function 1 as an X-versus-Y display. Channel 1 is the X axis
and waveform memory 2 is the Y axis.
10 OUTPUT 707;":FUNCTION1:VERSUS WMEMORY2,CHANNEL1"
20 END

16-49

Function Commands
VERSus

Functions Used as Operands

A function may be used as a source for another function, subject to the following
constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

16-50

Function Commands
VERTical

VERTical

Command :FUNCtion<N>:VERTical {AUTO | MANual}

The :FUNCtion<N>:VERTical command sets the vertical scaling mode of the
specified function to either AUTO or MANual.
This command also contains the following commands and queries:
• OFFset
• RANge

<N> An integer, 1 - 4, representing the selected function.

Query :FUNCtion<N>:VERTical?

The :FUNCtion<N>:VERTical? query returns the current vertical scaling mode of the
specified function.

Returned Format [:FUNCtion<N>:VERTical] {AUTO | MANual}<NL>

Example This example places the current state of the vertical tracking of function 1 in the string
variable, Setting$, then prints the contents of the variable to the computer's screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":FUNCTION1:VERTICAL?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

16-51

Function Commands
VERTical:OFFSet

VERTical:OFFSet

Command :FUNCtion<N>:VERTical:OFFSet <offset_value>

The :FUNCtion<N>:VERTical:OFFSet command sets the voltage represented at
center screen for the selected function. This automatically changes the mode from
auto to manual.

<N> An integer, 1 - 4, representing the selected function.

<offset_value> A real number for the vertical offset in the currently selected Y-axis units (normally
volts). The offset value is limited only to being within the vertical range that can be
represented by the function data.

Query :FUNCtion<N>:VERTical:OFFset?

The :FUNCtion<N>:VERTical:OFFSet? query returns the current offset value of the
selected function.

Returned Format [:FUNCtion<N>:VERTical:OFFset] <offset_value><NL>

Example This example places the current offset setting for function 2 in the numeric variable,
Value, then prints the contents to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":FUNCTION2:VERTICAL:OFFSET?"
30 ENTER 707;Value
40 PRINT Value
50 END

16-52

Function Commands
VERTical:RANGe

VERTical:RANGe

Command :FUNCtion<N>:VERTical:RANGe <full_scale_range>

The :FUNCtion<N>:VERTical:RANGe command defines the full-scale vertical axis
of the selected function. This automatically changes the mode from auto to manual,
if the oscilloscope is not already in manual mode.

<N> An integer, 1 - 4, representing the selected function.

<full_scale
_range> A real number for the full-scale vertical range, from -100E15 to 100E15.

Query :FUNCtion<N>:VERTical:RANGe?

The :FUNCtion<N>:VERTical:RANGe? query returns the current range setting of
the specified function.

Returned Format [:FUNCtion<N>:VERTical:RANGe] <range><NL>

Example This example places the current vertical range setting of function 2 in the numeric
variable, Value, then prints the contents to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":FUNCTION2:VERTICAL:RANGE?"
30 ENTER 707;Value
40 PRINT Value
50 END

17

Hardcopy Commands

17-2

Hardcopy Commands

The HARDcopy subsystem commands set various parameters for printing the
screen. The print sequence is activated when the root level command :PRINt
is sent.

These HARDcopy commands and queries are implemented in the Infiniium
Oscilloscopes:

• AREA
• DPRinter
• FACTors
• IMAGe
• PRINTers?

17-3

Hardcopy Commands
AREA

AREA

Command :HARDcopy:AREA {GRATicule | SCReen}

The :HARDcopy:AREA command selects which data from the screen is to be printed.
When you select GRATicule, only the graticule area of the screen is printed (this is
the same as choosing Waveforms Only in the Configure Printer dialog box). When
you select SCReen, the entire screen is printed.

Example This example selects the graticule for printing.
10 OUTPUT 707;":HARDCOPY:AREA GRATICULE"
20 END

Query :HARDcopy:AREA?

The :HARDcopy:AREA? query returns the current setting for the area of the screen
to be printed.

Returned Format [:HARDcopy:AREA] {GRATicule | SCReen}<NL>

Example This example places the current selection for the area to be printed in the string
variable, Selection$, then prints the contents of the variable to the computer's screen.
10 DIM Selection$[50]!Dimension variable
20 OUTPUT 707;":HARDCOPY:AREA?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

17-4

Hardcopy Commands
DPRinter

DPRinter

Command :HARDcopy:DPRinter {<printer_number> |
<printer_string>}

The :HARDcopy:DPRinter command selects the default printer to be used.

<printer
_number>

An integer representing the attached printer. This number corresponds to the number
returned with each printer name by the :HARDcopy:PRINters? query.

<printer
_string>

A string of alphanumeric characters representing the attached printer.
The :HARDcopy:DPRinter command specifies a number or string for the printer
attached to the oscilloscope. The printer string must exactly match the character
strings in the File->Print Setup dialog boxes, or the strings returned by the
:HARDcopy:PRINters? query.

Examples This example sets the default printer to the second installed printer returned by the
:HARDcopy:PRINters? query.
10 OUTPUT 707;":HARDCOPY:DPRINTER 2"
20 END

This example sets the default printer to the installed printer with the name "HP Laser".
10 OUTPUT 707;":HARDCOPY:DPRINTER ""HP Laser"""
20 END

17-5

Hardcopy Commands
DPRinter

Query :HARDcopy:DPRinter?

The :HARDcopy:DPRinter? query returns the current printer number and string.

Returned Format [:HARDcopy:DPRinter?]
{<printer_number>,<printer_string>,DEFAULT}<NL>

Or, if there is no default printer (no printers are installed), only a <NL> is returned.

Example This example places the current setting for the hard copy printer in the string variable,
Setting$, then prints the contents of the variable to the computer's screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":HARDCOPY:DPRinter?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

Programs Must Wait After Changing the Default Printer
It takes several seconds to change the default printer. Any programs that try
to set the default printer must wait (10 seconds is a safe amount of time) for the
change to complete before sending other commands. Otherwise, the
oscilloscope will become unresponsive.

17-6

Hardcopy Commands
FACTors

FACTors

Command :HARDcopy:FACTors {{ON | 1} | {OFF | 0}}

The :HARDcopy:FACTors command determines whether the oscilloscope setup
factors will be appended to screen or graticule images. FACTors ON is the same as
choosing Include Setup Information in the Configure Printer dialog box.

Example This example turns on the setup factors.
10 OUTPUT 707;":HARDCOPY:FACTORS ON"
20 END

Query :HARDcopy:FACTors?

The :HARDcopy:FACTors? query returns the current setup factors setting.

Returned Format [:HARDcopy:FACTors] {1 | 0}<NL>

Example This example places the current setting for the setup factors in the string variable,
Setting$, then prints the contents of the variable to the computer's screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":HARDCOPY:FACTORS?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

17-7

Hardcopy Commands
IMAGe

IMAGe

Command :HARDcopy:IMAGe {NORMal | INVert}

The :HARDcopy:IMAGe command prints the image normally, inverted, or in
monochrome. IMAGe INVert is the same as choosing Invert Waveform Colors in the
Configure Printer dialog box.

Example This example sets the hard copy image output to normal.
10 OUTPUT 707;":HARDCOPY:IMAGE NORMAL"
20 END

Query :HARDcopy:IMAGe?

The :HARDcopy:IMAGe? query returns the current image setting.

Returned Format [:HARDcopy:IMAGe] {NORMal | INVert}<NL>

Example This example places the current setting for the hard copy image in the string variable,
Setting$, then prints the contents of the variable to the computer's screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":HARDCOPY:IMAGE?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

17-8

Hardcopy Commands
PRINters?

PRINters?

Query :HARDcopy:PRINters?

The :HARDcopy:PRINters? query returns the currently available printers.

Returned Format [:HARDcopy:PRINters?]
<printer_count><NL><printer_data><NL>[,<printer_data><NL>]

<printer_count> The number of printers currently installed.

<printer
_data>

The printer number and the name of an installed printer. The word DEFAULT appears
next to the printer that is the currently selected default printer.
The <printer_data> return string has the following format:
<printer_number>,<printer_string>{,DEFAULT}

Example This example places the number of installed printers into the variable Count, loops
through it that number of times, and prints the installed printer names to the computer’s
screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":HARDCOPY:PRINTERS?"
30 ENTER 707;Count
40 IF Count>0 THEN
50 FOR Printer_number=1 TO Count
60 ENTER 707;Setting$
70 PRINT Setting$
80 NEXT Printer_number
90 END IF
100 END

18

Histogram Commands

18-2

Histogram Commands

The HISTogram commands and queries control the histogram features. A
histogram is a probability distribution that shows the distribution of acquired
data within a user-definable histogram window.

You can display the histogram either vertically, for voltage measurements, or
horizontally, for timing measurements.

The most common use for histograms is measuring and characterizing noise
or jitter on displayed waveforms. Noise is measured by sizing the histogram
window to a narrow portion of time and observing a veritcal histogram that
measures the noise on a waveform. Jitter is measured by sizing the histogram
window to a narrow portion of voltage and observing a horizontal histogram
that measures the jitter on an edge.

These HISTogram commands and queries are implemented in the Infiniium
Oscilloscopes:

• AXIS
• MODE
• SCALe:SIZE
• WINDow:DEFault
• WINDow:SOURce
• WINDow:X1Position|LLIMit
• WINDow:X2Position|RLIMit
• WINDow:Y1Position|TLIMit
• WINDow:Y2Position|BLIMit

Histograms and the
database

The histograms, mask testing, and color grade persistence use a specific
database that uses a different memory area from the waveform record for each
channel. When any of these features are turned on, the oscilloscope starts
building the database. The database is the size of the graticule area. Behind
each pixel is a 21-bit counter that is incremented each time data from a channel
or function hits a pixel. The maximum count (saturation) for each counter is
2,097,151. You can use the DISPlay:CGRade:LEVels command to see if any
of the counters are close to saturation.

18-3

The database continues to build until the oscilloscope stops acquiring data or
all both features (color grade persistence and histograms) are turned off. You
can clear the database by turning off all three features that use the database.

The database does not differentiate waveforms from different channels or
functions. If three channels are on and the waveform from each channel
happens to light the same pixel at the same time, the counter is incremented
by three. However, it is not possible to tell how many hits came from each
waveform. To separate waveforms, you can position the waveforms vertically
with the channel offset. By separating the waveforms, you can avoid
overlapping data in the database caused by multiple waveforms. Even if the
display is set to show only the most recent acquisition, the database keeps
track of all pixel hits while the database is building.

Remember that color grade persistence, mask testing, and histograms all use
the same database. Suppose that the database is building because color grade
persistence is ON; when mask testing or histograms are turned on, they can
use the information already established in the database as though they had
been turned on the entire time.

To avoid erroneous data, clear the display after you change oscilloscope setup
conditions or DUT conditions and acquire new data before extracting
measurement results.

18-4

Histogram Commands
AXIS

AXIS

Command :HISTogram:AXIS {VERTical | HORizontal}

The :HISTogram:AXIS command selects the type of histogram. A horizontal
histogram can be used to measure time related information like jitter. A vertical
histogram can be used to measure voltage related information like noise.

Example This example defines a vertical histogram.
10 OUTPUT 707;":HISTOGRAM:AXIS VERTICAL"
20 END

Query :HISTogram:AXIS?

The :HISTogram:AXIS? query returns the currently selected histogram type.

Returned Format [:HISTogram:AXIS] {VERTical | HORizontal}<NL>

Example This example returns the histogram type and prints it to the computer’s screen.
10 DIM Axis$[50]
20 OUTPUT 707;":HISTOGRAM:AXIS?"
30 ENTER 707;Axis$
40 PRINT Axis$
50 END

18-5

Histogram Commands
MODE

MODE

Command :HISTogram:MODE {OFF | MEASurement | WAVeforms}

The :HISTogram:MODE command selects the histogram mode. The histogram may
be off, set to track the waveforms, or set to track the measurement when the E2681A
Jitter Analysis Software is installed. When the E2681A Jitter Analysis Software is
installed, sending the :MEASure:JITTer:HISTogram ON command will
automatically set :HISTOgram:MODE to MEASurement.

Example This example sets the histogram mode to track the waveform.
10 OUTPUT 707;":HISTOGRAM:MODE WAVEFORM"
20 END

Query :HISTogram:MODE?

The :HISTogram:MODE? query returns the currently selected histogram mode.

Returned Format [:HISTogram:MODE] {OFF | MEASurement | WAVeform}<NL>

Example This example returns the result of the mode query and prints it to the computer’s
screen.
10 DIM Mode$[10]
20 OUTPUT 707;":HISTOGRAM:MODE?"
30 ENTER 707;Mode$
40 PRINT Mode$
50 END

The MEASurement parameter is only available when the E2681A Jitter
Analysis option is installed.

18-6

Histogram Commands
SCALe:SIZE

SCALe:SIZE

Command :HISTogram:SCALe:SIZE <size>

The :HISTogram:SCALe:SIZE command sets histogram size for vertical and
horizontal mode.

<size> The size is from 1.0 to 8.0 for the horizontal mode and from 1.0 to 10.0 for the vertical
mode.

Example This example sets the histogram size to 3.5.
10 OUTPUT 707;":HISTOGRAM:SCALE:SIZE 3.5"
20 END

Query :HISTogram:SCALe:SIZE?

The :HISTogram:SCALe:SIZE? query returns the correct size of the histogram.

Returned Format [:HISTogram:SCALe:SIZE] <size><NL>

Example This example returns the result of the size query and prints it to the computer’s screen.
10 DIM Size$[50]
20 OUTPUT 707;":HISTOGRAM:SCALE:SIZE?"
30 ENTER 707;Size$
40 PRINT Size$
50 END

18-7

Histogram Commands
WINDow:DEFault

WINDow:DEFault

Command :HISTogram:WINDow:DEFault

The :HISTogram:WINDow:DEFault command positions the histogram markers to a
default location on the display. Each marker will be positioned one division off the
left, right, top, and bottom of the display.

Example This example sets the histogram window to the default position.
10 OUTPUT 707;":HISTOGRAM:WINDOW:DEFAULT"
20 END

18-8

Histogram Commands
WINDow:SOURce

WINDow:SOURce

Command :HISTogram:WINDow:SOURce {CHANnel<N> | COMMonmode<P>
| DIFFerential<P> | FUNCtion<N> | WMEMory<N> | CLOCk
| EQUalized | MTRend | MSPectrum}

The :HISTogram:WINDow:SOURce command selects the source of the histogram
window. The histogram window will track the source’s vertical and horizontal scale.

<N> An integer, 1 through 4.

<P> An integer, 1 - 2.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).

Example This example sets the histogram window’s source to Channel 1.
10 OUTPUT 707;":HISTOGRAM:WINDOW:SOURCE CHANNEL1"
20 END

Query :HISTogram:WINDow:SOURce?

The :HISTogram:WINDow:SOURce? query returns the currently selected histogram
window source.

Returned Format [:HISTogram:WINDow:SOURce] {CHANnel<N> |
COMMonmode<P> | DIFFerential<P> | FUNCtion<N> |
WMEMory<N>}<NL>

Example This example returns the result of the window source query and prints it to the
computer’s screen.
10 DIM Winsour$[50]
20 OUTPUT 707;":HISTOGRAM:WINDOW:SOURCE?"

18-9

Histogram Commands
WINDow:SOURce

30 ENTER 707;Winsour$
40 PRINT Winsour$
50 END

18-10

Histogram Commands
WINDow:LLIMit

WINDow:LLIMit

Command :HISTogram:WINDow:LLIMit <left_limit>

The :HISTogram:WINDow:LLIMit command moves the Ax marker (left limit) of the
histogram window. The histogram window determines the portion of the display used
to build the database for the histogram. The histogram window markers will track
the scale of the histogram window source.

<left_limit> A real number that represents the left boundary of the histogram window.

Example This example sets the left limit position to -200 microseconds.
10 OUTPUT 707;":HISTOGRAM:WINDOW:LLIMit -200E-6"
20 END

Query :HISTogram:WINDow:LLIMit?

The :HISTogram:WINDow:LLIMit? query returns the value of the left limit
histogram window marker.

Returned Format [:HISTogram:WINDow:LLIMit] <left_limit><NL>

Example This example returns the result of the left limit position query and prints it to the
computer’s screen.
10 DIM LL$[50]
20 OUTPUT 707;":HISTOGRAM:WINDOW:LLIMIT?"
30 ENTER 707;LL$
40 PRINT LL$
50 END

18-11

Histogram Commands
WINDow:RLIMit

WINDow:RLIMit

Command :HISTogram:WINDow:RLIMit <right_limit>

The :HISTogram:WINDow:RLIMit command moves the Bx marker (right limit) of
the histogram window. The histogram window determines the portion of the display
used to build the database used for the histogram. The histogram window markers
will track the scale of the histogram window source.

<right_limit> A real number that represents the right boundary of the histogram window.

Example This example sets the Bx marker to 200 microseconds.
10 OUTPUT 707;":HISTOGRAM:WINDOW:RLIMit 200E-6"
20 END

Query :HISTogram:WINDow:RLIMit?

The :HISTogram:WINDow:RLIMit? query returns the value of the right histogram
window marker.

Returned Format [:HISTogram:WINDow:RLIMit] <right_limit><NL>

Example This example returns the result of the Bx position query and prints it to the computer’s
screen.
10 DIM RL$[50]
20 OUTPUT 707;":HISTOGRAM:WINDOW:RLIMit?"
30 ENTER 707;RL$
40 PRINT RL$
50 END

18-12

Histogram Commands
WINDow:BLIMit

WINDow:BLIMit

Command :HISTogram:WINDow:BLIMit <bottom_limit>

The :HISTogram:WINDow:BLIMit command moves the Ay marker (bottom limit)
of the histogram window. The histogram window determines the portion of the
display used to build the database used for the histogram. The histogram window
markers will track the scale of the histogram window source.

<bottom_limit> A real number that represents the bottom boundary of the histogram window.

Example This example sets the position of the Ay marker to -250 mV.
10 OUTPUT 707;":HISTOGRAM:WINDOW:BLIMit -250E-3"
20 END

Query :HISTogram:WINDow:BLIMit?

The :HISTogram:WINDow:BLIMit? query returns the value of the Ay histogram
window marker.

Returned Format [:HISTogram:WINDow:BLIMit] <bottom_limit><NL>

Example This example returns the result of the Ay position query and prints it to the computer’s
screen.
10 DIM BL$[50]
20 OUTPUT 707;":HISTOGRAM:WINDOW:BLIMit?"
30 ENTER 707;BL$
40 PRINT BL$
50 END

18-13

Histogram Commands
WINDow:TLIMit

WINDow:TLIMit

Command :HISTogram:WINDow:TLIMit <top_limit>

The :HISTogram:WINDow:TLIMit command moves the By marker (top limit) of the
histogram window. The histogram window determines the portion of the display used
to build the database used for the histogram. The histogram window markers will
track the scale of the histogram window source.

<top_limit> A real number that represents the top boundary of the histogram window.

Example This example sets the position of the By marker to 250 mV.
10 OUTPUT 707;":HISTOGRAM:WINDOW:TLIMit 250E-3"
20 END

Query :HISTogram:WINDow:TLIMit?

The :HISTogram:WINDow:TLIMit? query returns the value of the By histogram
window marker.

Returned Format [:HISTogram:WINDow:TLIMit] <top_limit><NL>

Example This example returns the result of the By position query and prints it to the computer’s
screen.
10 DIM TL$[50]
20 OUTPUT 707;":HISTOGRAM:WINDOW:TLIMit?"
30 ENTER 707;TL$
40 PRINT TL$
50 END

18-14

Histogram Commands
WINDow:TLIMit

19

InfiniiScan (ISCan) Commands

InfiniiScan (ISCan) Commands

The ISCan commands and queries control the InfiniiScan feature of the
oscilloscope. InfiniiScan provides several ways of searching through the
waveform data to find unique events.

The ISCan subsystem contains the following commands:

• DELay
• MEASurement
• MEASurement:FAIL
• MEASurement:LLIMit
• MEASurement:ULIMit
• MODE
• NONMonotonic:EDGE
• NONMonotonic:HYSTeresis
• NONMonotonic:SOURce
• RUNT:HYSTeresis
• RUNT:LLEVel
• RUN:SOURce
• RUNT:ULEVel
• SERial:PATTern
• SERial:SOURce
• ZONE<N>:MODE
• ZONE<N>:PLACement
• ZONE<N>:SOURce
• ZONE<N>:STATe
19-2

InfiniiScan (ISCan) Commands
DELay
DELay

Command :ISCan:DELay {OFF | <delay_time>}

The :ISCan:DELay command sets the delay time from when the hardware trigger
occurs and when InfiniiScan tries to find the waveform event that has been defined.

OFF Turns off the delay from the hardware trigger.

<delay_time> Sets the amount of time that the InfiniiScan trigger is delayed from the hardware
trigger.

Example The following example causes the oscilloscope to delay by 1 μs.
10 OUTPUT 707;”:ISCAN:DELay 1E-06”
20 END

Query :ISCan:DELay?

The query returns the current set delay value.

Returned Format [:ISCan:DELay] {OFF | <delay_time>}<NL>

Example The following example returns the current delay value and prints the result to the
controller’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":ISCAN:DELAY?"
30 ENTER 707;Value
40 PRINT Value
50 END
19-3

InfiniiScan (ISCan) Commands
MEASurement:FAIL
MEASurement:FAIL

Command :ISCan:MEASurement:FAIL {INSide | OUTSide}

The :ISCan:MEASurement:FAIL command sets the fail condition for an individual
measurement. The conditions for a test failure are set on the measurement selected
by the :ISCan:MEASurement command.
When a measurement failure is detected by the limit test the oscilloscope triggers and
the trigger action is executed.

INSide INside causes the oscilloscope to fail a test when the measurement results are within
the parameters set by the :ISCan:MEASurement:LIMit and
:ISCan:MEASurement:ULIMit commands.

OUTSide OUTside causes the oscilloscope to fail a test when the measurement results exceed
the parameters set by the :ISCan:MEASurement:LLIMit and the
:ISCan:MEASurement:ULIMit commands.

Example The following example causes the oscilloscope to trigger when the measurements are
outside the lower or upper limits.
10 OUTPUT 707;”:ISCAN:MEASUREMENT:FAIL OUTSIDE”
20 END

Query :ISCan:MEASurement:FAIL?

The query returns the current set fail condition.

Returned Format [:ISCan:MEASurement:FAIL] {INSide | OUTSide}<NL>

Example The following example returns the current fail condition and prints the result to the
controller’s screen.
10 DIM FAIL$[50]
20 OUTPUT 707;”:ISCAN:MEASUREMENT:FAIL?”
30 ENTER 707;FAIL$
40 PRINT FAIL$
50 END
19-4

InfiniiScan (ISCan) Commands
MEASurement:LLIMit
MEASurement:LLIMit

Command :ISCan:MEASurement:LLIMit <lower_value>

The :ISCan:MEASurement:LLIMit (lower limit) command sets the lower test limit
for the currenly selected measurement. The :ISCan:MEASurement command selects
the measurement used.

<lower_value> A real number.

Example The following example sets the lower test limit to 1.0.
10 OUTPUT 707;”:ISCAN:MEASUREMENT:LLIMIT 1.0”
20 END

If, for example, you chose to measure volts peak-peak and want the smallest
acceptable signal swing to be one volt, you could use the above command, then set
the measurement limit to trigger when the signal is outside the specified limit.

Query :ISCan:MEASurement:LLIMit?

The query returns the current value set by the command.

Returned Format [:ISCan:MEASurement:LLIMit]<lower_value><NL>

Example The following example returns the current lower test limit and prints the result to the
controller’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":ISCAN:MEASUREMENT:LLIMIT?"
30 ENTER 707;Value
40 PRINT Value
50 END
19-5

InfiniiScan (ISCan) Commands
MEASurement
MEASurement

Command :ISCan:MEASurement {MEAS1 | MEAS2 | MEAS3 | MEAS4 |
MEAS5}

The :ISCan:MEASurement command selects the current source for Measurement
Limit Test Trigger. It selects one of the active measurements as referred to by their
position in the Measurement tab area at the bottom of the screen. Measurements are
numbered from left to right in the Measurements tab area of the screen.

Example The following example selects the first measurement as the source for the limit testing
commands.
10 OUTPUT 707;”:ISCAN:MEASUREMENT MEAS1”
20 END

Query :ISCan:MEASurement?

The query returns the currently selected measurement source.

Returned Format [:ISCan:MEASurement]{MEAS1 | MEAS2 | MEAS3 | MEAS4 | MEAS5}
<NL>

Example The following example returns the currently selected measurement source for the limit
testing commands.
10 DIM SOURCE$[50]
20 OUTPUT 707;”:ISCAN:MEASUREMENT?”
30 ENTER 707;SOURCE$
40 PRINT SOURCE$
50 END

See Also Measurements are started by the commands in the Measurement Subsystem.
19-6

InfiniiScan (ISCan) Commands
MEASurement:ULIMit
MEASurement:ULIMit

Command :ISCan:MEASurement:ULIMit <upper_value>

The :ISCan:MEASurement:ULIMit (upper limit) command sets the upper test limit
for the active measurement currently selected by the :ISCan:MEASurement
command.

<upper_value> A real number.

Example The following example sets the upper limit of the currently selected measurement to
500 mV.
10 OUTPUT 707;”:ISCAN:MEASUREMENT:ULIMIT 500E-3”
20 END

Suppose you are measuring the maximum voltage of a signal with Vmax, and that
voltage should not exceed 500 mV. You can use the above program and set the
:ISCan:MEASurement:FAIL OUTside command to specify that the oscilloscope will
trigger when the voltage exceeds 500 mV.

Query :ISCan:MEASurement:ULIMit?

The query returns the current upper limit of the limit test.

Returned Format [:ISCan:MEASurement:ULIMit] <upper_value><NL>

Example The following example returns the current upper limit of the limit test and prints the
result to the controller’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":ISCAN:MEASUREMENT:ULIMit?"
30 ENTER 707;Value
40 PRINT Value
50 END
19-7

InfiniiScan (ISCan) Commands
MODE
MODE

Command :ISCan:MODE {OFF | MEASurement | NONMontonic |
RUNT | SERial | ZONE}

The :ISCan:MODE command selects the type of InfiniiScan trigger mode. The
Measurement, Runt, Zone Qualify, and Non-monotonic Edge InfiniiScan modes can
be set using this command.

OFF Turns off the InfiniiScan trigger mode.

MEASurement Sets the Measurement Limit trigger mode.

NONMontonic Sets the Non-monotonic edge trigger mode.

RUNT Sets the Runt trigger mode.

SERial Sets the Serial trigger mode.

ZONE Sets the Zone Qualify trigger mode.

Example The following example selects the runt trigger.
10 OUTPUT 707;”:ISCAN:MODE RUNT”
20 END

Query :ISCan:MODE?

The query returns the currently selected IniniiScan trigger mode.

Returned Format [:ISCan:MEASurement]{OFF | MEASurement | NONMonotonic |
RUNT | SERial | ZONE}<NL>

Example The following example returns the currently selected InfiniiScan trigger mode.
10 DIM MODE$[50]
20 OUTPUT 707;”:ISCAN:MODE?”
30 ENTER 707;MODE$
40 PRINT MODE$
50 END
19-8

InfiniiScan (ISCan) Commands
NONMonotonic:EDGE
NONMonotonic:EDGE

Command :ISCan:NONMonotonic:EDGE {EITHer | FALLing | RISing}

The :ISCan:NONMonotonic:EDGE command selects the rising edge, the falling
edge, or either edge for the Non-monotonic edge trigger mode.

EITHer Sets the edge used by the Non-monotonic edge trigger to both rising and falling edges.

FALLing Sets the edge used by the Non-monotonic edge trigger to falling edges.

RISing Sets the edge used by the Non-monotonic edge trigger to rising edges.

Example The following example selects the falling edge non-monotonic trigger.
10 OUTPUT 707;”:ISCAN:NONMONOTONIC:EDGE FALLING”
20 END

Query :ISCan:NONMonotonic:EDGE?

The query returns the currently selected edge type for the Non-Monotonic Edge
trigger.

Returned Format [:ISCan:NONMonotonic:EDGE]{EITHer | FALLing | RISing}<NL>

Example The following example returns the currently selected edge type used for the Non-
monotonic Edge trigger mode.
10 DIM SOURCE$[50]
20 OUTPUT 707;”:ISCAN:NONMONOTONIC:EDGE?”
30 ENTER 707;SOURCE$
40 PRINT SOURCE$
50 END
19-9

InfiniiScan (ISCan) Commands
NONMonotonic:HYSTeresis
NONMonotonic:HYSTeresis

Command :ISCan:NONMonotonic:HYSTeresis <value>

The :ISCan:NONMonotonic:HYSTeresis command sets the hysteresis value used for
the Non-monotonic Edge trigger.

<value> is a real number for the hysteresis.

Example The following example sets the hysteresis value used by the Non-monotonic trigger
mode to 10 mV.
10 OUTPUT 707;”:ISCAN:NONMONOTONIC:HYSTERESIS 1E-2”
20 END

Query :ISCan:NONMonotonic:HYSTersis?

The query returns the hysteresis value used by the Non-monotonic Edge trigger mode.

Returned Format [:ISCan:NONMonotonic:HYSTeresis]<value><NL>

Example The following example returns and prints the value of the hysteresis.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":ISCAN:NONMONOTONIC:HYSTERESIS?"
30 ENTER 707;Value
40 PRINT Value
50 END
19-10

InfiniiScan (ISCan) Commands
NONMonotonic:SOURce
NONMonotonic:SOURce

Command :ISCan:NONMonotonic:SOURce CHANnel<N>

The :ISCan:NONMonotonic:SOURce command sets the source used for the Non-
monotonic Edge trigger.

<N> is an integer from 1-4.

Example The following example sets the source used by the Non-monotonic trigger mode to
channel 1.
10 OUTPUT 707;”:ISCAN:NONMONOTONIC:SOURCE CHANNEL1”
20 END

Query :ISCan:NONMonotonic:SOURce?

The query returns the source used by the Non-monotonic Edge trigger mode.

Returned Format [:ISCan:NONMonotonic:SOURce]CHANnel<N><NL>

Example The following example returns the currently selected source for the Non-monotonic
Edge trigger mode.
10 DIM SOURCE$[50]
20 OUTPUT 707;”:ISCAN:NONMONTONIC:SOURCE?”
30 ENTER 707;SOURCE$
40 PRINT SOURCE$
50 END
19-11

InfiniiScan (ISCan) Commands
RUNT:HYSTeresis
RUNT:HYSTeresis

Command :ISCan:RUNT:HYSTeresis <value>

The :ISCan:RUNT:HYSTeresis command sets the hysteresis value used for the Runt
trigger.

<value> is a real number for the hysteresis.

Example The following example sets the hysteresis value used by the Runt trigger mode to 10
mV.
10 OUTPUT 707;”:ISCAN:RUNT:HYSTERESIS 1E-2”
20 END

Query :ISCan:RUNT:HYSTersis?

The query returns the hysteresis value used by the Runt trigger mode.

Returned Format [:ISCan:RUNT:HYSTeresis]<value><NL>

Example The following example returns and prints the value of the hysteresis.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":ISCAN:RUNT:HYSTERESIS?"
30 ENTER 707;Value
40 PRINT Value
50 END
19-12

InfiniiScan (ISCan) Commands
RUNT:LLEVel
RUNT:LLEVel

Command ISCan:RUNT:LLEVel <lower_level>

The :ISCan:RUNT:LLEVel (lower level) command sets the lower level limit for the
Runt trigger mode.

<lower_level> A real number.

Example The following example sets the lower level limit to 1.0 V.
10 OUTPUT 707;”:ISCAN:RUNT:LLEVel 1.0”
20 END

Query :ISCan:RUNT:LLEVel?

The query returns the lower level limit set by the command.

Returned Format [:ISCan:RUNT:LLEVel] <lower_level><NL>

Example The following example returns the current lower level used by the Runt trigger and
prints the result to the controller’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":ISCAN:RUNT:LLEVel?"
30 ENTER 707;Value
40 PRINT Value
50 END
19-13

InfiniiScan (ISCan) Commands
RUNT:SOURce
RUNT:SOURce

Command :ISCan:RUNT:SOURce CHANnel<N>

The :ISCan:RUNT:SOURce command sets the source used for the Runt trigger.

<N> is an integer from 1-4.

Example The following example sets the source used by the Runt trigger mode to
channel 1.
10 OUTPUT 707;”:ISCAN:RUNT:SOURCE CHANNEL1”
20 END

Query :ISCan:RUNT:SOURce?

The query returns the source used by the Runt trigger mode.

Returned Format [:ISCan:RUNT:SOURce]CHANnel<N><NL>

Example The following example returns the currently selected source for the Runt trigger mode.
10 DIM SOURCE$[50]
20 OUTPUT 707;”:ISCAN:RUNT:SOURCE?”
30 ENTER 707;SOURCE$
40 PRINT SOURCE$
50 END
19-14

InfiniiScan (ISCan) Commands
RUNT:ULEVel
RUNT:ULEVel

Command :ISCan:RUNT:ULEVel <upper_level>

The :ISCan:RUNT:ULEVel (upper level) command sets the upper level limit for the
Runt trigger mode.

<upper_level> A real number.

Example The following example sets the upper level value used by the Runt trigger mode to
500 mV.
10 OUTPUT 707;”:ISCAN:RUNT:ULEVEL 500E-3”
20 END

Query :ISCan:RUNT:ULEVel?

The query returns the current upper level value used by the Runt trigger.

Returned Format [:ISCan:RUNT:ULEVel] <upper_level><NL>

Example The following example returns the current upper level used by the Runt trigger and
prints the result to the controller’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":ISCAN:RUNT:ULEVel?"
30 ENTER 707;Value
40 PRINT Value
50 END
19-15

InfiniiScan (ISCan) Commands
SERial:PATTern
SERial:PATTern

Command :ISCan:SERial:PATTern <pattern>

The :ISCan:SERial:PATTern command sets the pattern used for the Serial trigger.

<pattern> is a 1, 0, or X binary character string of up to 80 characters. The pattern can only be
expressed in the binary format.

Example The following example sets the pattern used by the Serial trigger to
101100.
10 OUTPUT 707;”:ISCAN:SERIAL:PATTERN ““101100”””
20 END

Query :ISCan:SERial:PATTern?

The query returns the pattern used by the Serial trigger mode.

Returned Format [:ISCan:SERial:PATTern]<pattern><NL>

Example The following example returns the currently selected pattern for the Serial trigger
mode.
10 DIM PATTERN$[80]
20 OUTPUT 707;”:ISCAN:SERIAL:PATTERN?”
30 ENTER 707;PATTERN$
40 PRINT PATTERN$
50 END
19-16

InfiniiScan (ISCan) Commands
SERial:SOURce
SERial:SOURce

Command :ISCan:SERial:SOURce CHANnel<N>

The :ISCan:SERial:SOURce command sets the source used for the Serial trigger.

<N> is an integer from 1-4.

Example The following example sets the source used by the Serial trigger mode to
channel 1.
10 OUTPUT 707;”:ISCAN:SERIAL:SOURCE CHANNEL1”
20 END

Query :ISCan:SERial:SOURce?

The query returns the source used by the Serial trigger mode.

Returned Format [:ISCan:SERial:SOURce]CHANnel<N><NL>

Example The following example returns the currently selected source for the Serial trigger
mode.
10 DIM SOURCE$[50]
20 OUTPUT 707;”:ISCAN:SERIAL:SOURCE?”
30 ENTER 707;SOURCE$
40 PRINT SOURCE$
50 END
19-17

InfiniiScan (ISCan) Commands
ZONE<N>:MODE
ZONE<N>:MODE

Command :ISCan:ZONE<N>:MODE {INTersect | NOTintersect |
OINTersect | ONOTintersect}

The :ISCan:ZONE<N>:MODE command sets the Zone Qualify trigger mode. For
the INTersect mode, the waveform must enter the zone region to qualify as a valid
waveform. For NOTintersect mode, the waveform cannot enter a zone region to
qualify as a valid waveform.

<N> is an integer from 1-4.

Example The following example sets the mode to intersect for zone 1.
10 OUTPUT 707;”:ISCAN:ZONE1:MODE INTERSECT”
20 END

Query :ISCan:ZONE<N>:MODE?

The query returns the mode used by zone 1.

Returned Format [:ISCan:ZONE<N>:MODE]{INTersect | NOTintersect | OINTersect
| ONOTintersect}<NL>

Example The following example returns the currently selected mode for zone 1.
10 DIM MODE$[50]
20 OUTPUT 707;”:ISCAN:ZONE1:MODE?”
30 ENTER 707;MODE$
40 PRINT MODE$
50 END
19-18

InfiniiScan (ISCan) Commands
ZONE<N>:PLACement
ZONE<N>:PLACement

Command :ISCan:ZONE<N>:PLACement
<width>,<height>,<x_center>,<y_center>

The :ISCan:ZONE<N>:PLACement command sets the location and size of a zone
for the zone qualify trigger mode.

<N> is an integer from 1-4.

<width> a real number defining the width of a zone in seconds.

<height> is a real number defining the height of a zone in volts.

<x_center> is a real number defining the x coordinate of the center of the zone in seconds.

<y_center> is a real number defining the y coordinate of the center of the zone in volts.

Example The following example sets the size of zone 1 to be 500 ps wide and 0.5 volts high
and centered about the xy coordinate of 1.5 ns and 1 volt.
10 OUTPUT 707;”:ISCAN:ZONE1:PLACEMENT 500e-12,0.5,1.5e-9,1”
20 END

Query :ISCan:ZONE<N>:PLACement?

The query returns the placement values used by zone 1.

Returned Format [:ISCan:ZONE<N>:PLACement]<width>,<height>,<x_center>,
<y_center><NL>

Example The following example returns the current placement values for zone 1.
10 DIM PLACEMENT$[50]
20 OUTPUT 707;”:ISCAN:ZONE1:PLACEMENT?”
30 ENTER 707;PLACEMENT$
40 PRINT PLACEMENT$
50 END
19-19

InfiniiScan (ISCan) Commands
ZONE:SOURce
ZONE:SOURce

Command :ISCan:ZONE:SOURce CHANnel<N>

The :ISCan:ZONE:SOURce command sets the source used for the zone qualify
trigger.

<N> is an integer from 1-4.

Example The following example sets the source used by the zone qualify trigger to channel 1.
10 OUTPUT 707;”:ISCAN:ZONE:SOURCE CHANNEL1”
20 END

Query :ISCan:ZONE:SOURce?

The query returns the source used by the zone qualify trigger.

Returned Format [:ISCan:ZONE:SOURce]CHANnel<N><NL>

Example The following example returns the currently selected source for zone qualify trigger.
10 DIM SOURCE$[50]
20 OUTPUT 707;”:ISCAN:ZONE:SOURCE?”
30 ENTER 707;SOURCE$
40 PRINT SOURCE$
50 END
19-20

InfiniiScan (ISCan) Commands
ZONE<N>:STATe
ZONE<N>:STATe

Command :ISCan:ZONE<N>:STATe {{ON | 1} | {OFF | 0}}

The :ISCan:ZONE<N>:STATe command turns a zone off or on for the zone qualify
trigger.

<N> is an integer from 1-4.

Example The following example turns on zone 2.
10 OUTPUT 707;”:ISCAN:ZONE2:STATE ON”
20 END

Query :ISCan:ZONE<N>:STATe?

The query returns the state value for a zone.

Returned Format [:ISCan:ZONE<N>:STATe]{1 | 0}<NL>

Example The following example returns the current state value for zone 2.
10 DIM STATE$[50]
20 OUTPUT 707;”:ISCAN:ZONE2:STATE?”
30 ENTER 707;STATE$
40 PRINT STATE$
50 END
19-21

InfiniiScan (ISCan) Commands
ZONE<N>:STATe
19-22

20

Limit Test Commands

Limit Test Commands

The Limit Test commands and queries control the limit test features of the
oscilloscope. Limit testing automatically compares measurement results with
pass or fail limits. The limit test tracks up to four measurements. The action
taken when the test fails is also controlled with commands in this subsystem.

The Limit Test subsystem contains the following commands:

• FAIL
• LLIMit (Lower Limit)
• MEASurement
• RESults?
• TEST
• ULIMit (Upper Limit)
20-2

Limit Test Commands
FAIL
FAIL

Command :LTESt:FAIL {INSide | OUTSide}

The :LTESt:FAIL command sets the fail condition for an individual measurement.
The conditions for a test failure are set on the source selected with the last
LTESt:MEASurement command.
When a measurement failure is detected by the limit test, the fail action conditions
are executed, and there is the potential to generate an SRQ.

INSide FAIL INside causes the oscilloscope to fail a test when the measurement results are
within the parameters set by the LLTESt:LIMit and LTESt:ULIMit commands.

OUTSide FAIL OUTside causes the oscilloscope to fail a test when the measurement results
exceed the parameters set by LTESt:LLIMit and LTESt:ULIMit commands.

Example The following example causes the oscilloscope to fail a test when the measurements
are outside the lower and upper limits.
10 OUTPUT 707;”:LTEST:FAIL OUTSIDE”
20 END

Query :LTESt:FAIL?

The query returns the current set fail condition.

Returned Format [:LTESt:FAIL] {INSide | OUTSide}<NL>

Example The following example returns the current fail condition and prints the result to the
controller’s screen.
10 DIM FAIL$[50]
20 OUTPUT 707;”:LTEST:FAIL?”
30 ENTER 707;FAIL$
40 PRINT FAIL$
50 END
20-3

Limit Test Commands
LLIMit
LLIMit

Command :LTESt:LLIMit <lower_value>

The :LTESt:LLIMit (Lower LIMit) command sets the lower test limit for the active
measurement currently selected by the :LTESt:MEASurement command.

<lower_value> A real number.

Example The following example sets the lower test limit to 1.0.
10 OUTPUT 707;”:LTEST:LLIMIT 1.0”
20 END

If, for example, you chose to measure volts peak-peak and want the smallest
acceptable signal swing to be one volt, you could use the above command, then set
the limit test to fail when the signal is outside the specified limit.

Query :LTESt:LLIMit?

The query returns the current value set by the command.

Returned Format [:LTESt:LLIMit]<lower_value><NL>

Example The following example returns the current lower test limit and prints the result to the
controller’s screen.
10 DIM LLIM$[50]
20 OUTPUT 707;”:LTEST:LLIMIT?”
30 ENTER 707;LLIM$
40 PRINT LLIM$
50 END
20-4

Limit Test Commands
MEASurement
MEASurement

Command :LTESt:MEASurement {MEAS1 | MEAS2 | MEAS3 | MEAS4 |
MEAS5}

The :LTESt:MEASurement command selects the current source for Limit Test for the
ULIMit and LLIMit commands. It selects one of the active measurements as referred
to by their position in the measurement window on the bottom of the screen.
Measurements are numbered from left to right.

Example The following example selects the first measurement as the source for the limit testing
commands.
10 OUTPUT 707;”:LTEST:MEASUREMENT MEAS1”
20 END

Query :LTESt:MEASurement?

The query returns the currently selected measurement source.

Returned Format [:LTESt:MEASurement]{MEAS1 | MEAS2 | MEAS3 | MEAS4 | MEAS5}
<NL>

Example The following example returns the currently selected measurement source for the limit
testing commands.
10 DIM SOURCE$[50]
20 OUTPUT 707;”:LTEST:MEASUREMENT?”
30 ENTER 707;SOURCE$
40 PRINT SOURCE$
50 END

See Also Measurements are started in the Measurement Subsystem.
20-5

Limit Test Commands
RESults?
RESults?

Query :LTESt:RESults? {MEAS1 | MEAS2 | MEAS3 | MEAS4 |
MEAS5}

The query returns the measurement results for selected measurement. The values
returned are the failed minimum value (Fail Min), the failed maximum value (Fail
Max), and the total number of measurements made (# of Meas).

Returned Format [:LTESt:RESults] <fail_min>,<fail_max>,<num_meas><NL>

<fail_min> A real number representing the total number of measurements that have failed the
minimum limit.

<fail_max> A real number representing the total number of measurements that have failed the
maximum limit.

<num_meas> A real number representing the total number of measurements that have been made.

Example The following example returns the values for the limit test of measurement 1.
10 DIM RESULTS$[50]
20 OUTPUT 707;”:LTEST:RESults? MEAS1”
30 ENTER 707;RESULTS$
40 PRINT RESULTS$
50 END

See Also Measurements are started in the Measurement Subsystem.
20-6

Limit Test Commands
TEST
TEST

Command :LTESt:TEST {{ON | 1} {OFF | 0}}

The LTESt:TEST command controls the execution of the limit test function. ON
allows the limit test to run over all of the active measurements. When the limit test is
turned on, the limit test results are displayed on screen in a window below the
graticule.

Example The following example turns off the limit test function.
10 OUTPUT 707;”:LTEST:TEST OFF”
20 END

Query :LTESt:TEST?

The query returns the state of the TEST control.

Returned Format [:LTESt:TEST] {1 | 0} <NL>

Example The following example returns the current state of the limit test and prints the result
to the controller’s screen.
10 DIM TEST$[50]
20 OUTPUT 707;”:LTEST:TEST?”
30 ENTER 707;TEST$
40 PRINT TEST$
50 END

 The result of the MEAS:RESults? query has two extra fields when LimitTESt:TEST
is ON (failures, total). Failures is a number and total is the total number of
measurements made.
20-7

Limit Test Commands
ULIMit
ULIMit

Command :LTESt:ULIMit <upper_value>

The :LTESt:ULIMit (Upper LIMit) command sets the upper test limit for the active
measurement currently selected by the last :LTESt:MEASurement command.

<upper_value> A real number.

Example The following example sets the upper limit of the currently selected measurement to
500 milli.
10 OUTPUT 707;”:LTEST:ULIMIT 500E-3”
20 END

Suppose you are measuring the maximum voltage of a signal with Vmax, and that
voltage should not exceed 500 mV. You can use the above program and set the
LTESt:FAIL OUTside command to specify that the limit subsystem will fail a
measurement when the voltage exceeds 500 mV.

Query :LTESt:ULIMit?

The query returns the current upper limit of the limit test.

Returned Format [:LTESt:ULIMit] <upper_value><NL>

Example The following example returns the current upper limit of the limit test and prints the
result to the controller’s screen.
10 DIM ULIM$[50]
20 OUTPUT 707;”:LTEST:ULIMIT?”
30 ENTER 707;ULIM$
40 PRINT ULIM$
50 END
20-8

21

Marker Commands

21-2

Marker Commands

The commands in the MARKer subsystem specify and query the settings of
the time markers (X axis) and current measurement unit markers (volts, amps,
and watts for the Y axis). You typically set the Y-axis measurement units
using the :CHANnel:UNITs command.

These MARKer commands and queries are implemented in the Infiniium
Oscilloscopes:

• CURsor?
• MODE
• STATe
• TSTArt
• TSTOp
• VSTArt
• VSTOp
• X1Position
• X2Position
• X1Y1source
• X2Y2source
• XDELta?
• Y1Position
• Y2Position
• YDELta?

Guidelines for Using Queries in Marker Modes

In Track Waveforms mode, use :MARKer:CURSor? to track the position of
the waveform. In Manual Markers and Track Measurements Markers modes,
use other queries, such as the X1Position? and X2Position?, and VSTArt? and
VSTOp? queries. If you use :MARKer:CURSor? when the oscilloscope is in
either Manual Markers or Track Measurements Markers modes, it will put the
oscilloscope in Track Waveforms mode, regardless of the mode previously
selected. In addition, measurement results may not be what you expected.

21-3

Marker Commands
CURSor?

CURSor?

Query :MARKer:CURSor? {DELTa | STARt | STOP}

The :MARKer:CURSor? query returns the time and current measurement unit values
of the specified marker (if markers are in Track Waveforms mode) as an ordered pair
of time and measurement unit values.

• If DELTA is specified, the value of delta Y and delta X are returned.
• If START is specified, marker A’s x-to-y positions are returned.
• If STOP is specified, marker B’s x-to-y positions are returned.

Returned Format [:MARKer:CURSor] {DELTa | STARt | STOP}
{<Ax, Ay> | <Bx, By> | <deltaX, deltaY>}<NL>

Example This example returns the current position of the X cursor and measurement unit marker
1 to the string variable, Position$. The program then prints the contents of the variable
to the computer's screen.
10 DIM Position$[50]!Dimension variable
20 OUTPUT 707;":MARKER:CURSOR? START"
30 ENTER 707;Position$
40 PRINT Position$
50 END

C A U T I O N The :MARKer:CURSor? query may change marker mode and results.
In Track Waveforms mode, use :MARKer:CURSor? to track the position of the
waveform. In Manual Markers and Track Measurements Markers modes, use other
marker queries, such as the X1Position? and X2Position?, and VSTArt? and VSTOp?
queries.
If you use :MARKer:CURSor? when the oscilloscope is in either Manual Markers or
Track Measurements Markers modes, it will put the oscilloscope in Track Waveforms
mode, regardless of the mode previously selected. In addition, measurement results
may not be what you expected. In addition, measurement results may not be what you
expected.

21-4

Marker Commands
MODE

MODE

Command :MARKer:MODE {OFF | MANual | WAVeform |
MEASurement | HISTogram | MTESt}

The :MARKer:MODE command sets the marker mode.

OFF Removes the marker information from the display.

MANual Enables manual placement of markers A and B.

WAVeform Tracks the current waveform.

MEASurement Tracks the most recent measurement.

HISTogram Tracks the the histogram window.

MEASurement Tracks the mask scale.

Example This example sets the marker mode to waveform.
10 OUTPUT 707;":MARKER:MODE WAVEFORM"
20 END

Query :MARKer:MODE?

The :MARKer:MODE? query returns the current marker mode.

Returned Format [:MARKer:MODE] {OFF | MANual | WAVeform | MEASurement |
HISTogram | MTESt}<NL>

Example This example places the current marker mode in the string variable, Selection$, then
prints the contents of the variable to the computer's screen.
10 DIM Selection$[50]!Dimension variable
20 OUTPUT 707;":MARKER:MODE?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

21-5

Marker Commands
TSTArt

TSTArt

Command :MARKer:TSTArt <Ax_position>

The :MARKer:TSTArt command sets the Ax marker position. The
:MARKer:X1Position command described in this chapter also sets the Ax marker
position.

<Ax_position> A real number for the time at the Ax marker, in seconds.

Example This example sets the Ax marker at 90 ns. Notice that this example uses the
X1Position command instead of TSTArt.
10 OUTPUT 707;":MARKER:X1POSITION 90E-9"
20 END

Query :MARKer:TSTArt?

The :MARKer:TSTArt? query returns the time at the Ax marker.

Returned Format [:MARKer:TSTArt] <Ax_position><NL>

Use :MARKer:X1Position Instead of :MARKer:TSTArt

The :MARKer:TSTArt command and query perform the same function as the
:MARKer:X1Position command and query. The :MARKer:TSTArt
command is provided for compatibility with programs written for previous
oscilloscopes. You should use :MARKer:X1Position for new programs.

21-6

Marker Commands
TSTArt

Example This example places the current setting of the Ax marker in the numeric variable,
Setting, then prints the contents of the variable to the computer's screen. Notice that
this example uses the :MARKer:X1Position? query instead of the :MARKer:TSTArt?
query.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off"
20 OUTPUT 707;":MARKER:X1POSITION?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

Do Not Use TST as the Short Form of TSTArt and TSTOp

The short form of the TSTArt command and query does not follow the defined
convention for short form commands. Because the short form, TST, is the same
for TSTArt and TSTOp, sending TST produces an error. Use TSTA for
TSTArt.

21-7

Marker Commands
TSTOp

TSTOp

Command :MARKer:TSTOp <Bx_position>

The :MARKer:TSTOp command sets the Bx marker position. The
:MARKer:X2Position command described in this chapter also sets the Bx marker
position.

<Bx_position> A real number for the time at the Bx marker, in seconds.

Example This example sets the Bx marker at 190 ns. Notice that this example uses the
X2Position command instead of TSTOp.
10 OUTPUT 707;":MARKER:X2POSITION 190E-9"
20 END

Use :MARKer:X2Position Instead of :MARKer:TSTOp

The :MARKer:TSTOp command and query perform the same function as the
:MARKer:X2Position command and query. The :MARKer:TSTOp command
is provided for compatibility with programs written for previous oscilloscopes.
You should use :MARKer:X2Position for new programs.

21-8

Marker Commands
TSTOp

Query :MARKer:TSTOp?

The :MARKer:TSTOp? query returns the time at the Bx marker position.

Returned Format [:MARKer:TSTOp] <Bx_position><NL>

Example This example places the current setting of the Bx marker in the numeric variable,
Setting, then prints the contents of the variable to the computer's screen. Notice that
this example uses the :MARKer:X2Position? query instead of the :MARKer:TSTOp?
query.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MARKER:X2POSITION?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

Do Not Use TST as the Short Form of TSTArt and TSTOp

The short form of the TSTOp command and query does not follow the defined
convention for short form commands. Because the short form, TST, is the same
for TSTArt and TSTOp, sending TST produces an error. Use TSTO for
TSTOp.

21-9

Marker Commands
VSTArt

VSTArt

Command :MARKer:VSTArt <Ay_position>

The :MARKer:VSTArt command sets the Ay marker position and moves the
Ay marker to the specified measurement unit value on the specified source. The
:MARKer:Y1Position command described in this chapter does also.

<Ay_position> A real number for the current measurement unit value at Ay (volts, amps, or watts).

Example This example sets Ay to −10 mV. Notice that this example uses the Y1Position
command instead of VSTArt.
10 OUTPUT 707;":MARKER:Y1POSITION −10E-3"
20 END

Query :MARKer:VSTArt?

The :MARKer:VSTArt? query returns the current measurement unit level of Ay.

Returned Format [:MARKer:VSTArt] <Ay_position><NL>

Use :MARKer:Y1Position Instead of :MARKer:VSTArt

The :MARKer:VSTArt command and query perform the same function as the
:MARKer:Y1Position command and query. The :MARKer:VSTArt
command is provided for compatibility with programs written for previous
oscilloscopes. You should use :MARKer:Y1Position for new programs.

21-10

Marker Commands
TVSTOp

TVSTOp

Command :MARKer:VSTOp <By_position>

The :MARKer:VSTOp command sets the By marker position. The
:MARKer:Y2Position command described in this chapter also sets the By marker
position.

<By_position> A real number for the time at the By marker, in seconds.

Example This example sets the By marker at 10 mV. Notice that this example uses the
Y2Position command instead of VSTOp.
10 OUTPUT 707;":MARKER:Y2POSITION 10E-3"
20 END

Use :MARKer:Y2Position Instead of :MARKer:VSTOp

The :MARKer:VSTOp command and query perform the same function as the
:MARKer:Y2Position command and query. The :MARKer:VSTOp command
is provided for compatibility with programs written for previous oscilloscopes.
You should use :MARKer:Y2Position for new programs.

21-11

Marker Commands
TVSTOp

Query :MARKer:VSTOp?

The :MARKer:VSTOp? query returns the time at the By marker position.

Returned Format [:MARKer:VSTOp] <By_position><NL>

Example This example places the current setting of the By marker in the numeric variable,
Setting, then prints the contents of the variable to the computer's screen. Notice that
this example uses the :MARKer:Y2? query instead of the :MARKer:VSTOp? query.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MARKER:Y2POSITION?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

21-12

Marker Commands
X1Position

X1Position

Command :MARKer:X1Position <Ax_position>

The :MARKer:X1Position command sets the Ax marker position, and moves the Ax
marker to the specified time with respect to the trigger time.

<Ax_position> A real number for the time at the Ax marker in seconds.

Example This example sets the Ax marker to 90 ns.
10 OUTPUT 707;":MARKER:X1POSITION 90E-9"
20 END

Query :MARKer:X1Position?

The :MARKer:X1Position? query returns the time at the Ax marker position.

Returned Format [:MARKer:X1Position] <Ax_position><NL>

Example This example returns the current setting of the Ax marker to the numeric variable,
Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MARKER:X1POSITION?"
30 ENTER 707;Value
40 PRINT Value
50 END

See Also :MARKer:TSTArt

21-13

Marker Commands
X2Position

X2Position

Command :MARKer:X2Position <Bx_position>

The :MARKer:X2Position command sets the Bx marker position and moves the Bx
marker to the specified time with respect to the trigger time.

<Bx_position> A real number for the time at the Bx marker in seconds.

Example This example sets the Bx marker to 90 ns.
10 OUTPUT 707;":MARKER:X2POSITION 90E-9"
20 END

Query :MARKer:X2Position?

The :MARKer:X2Position? query returns the time at Bx marker in seconds.

Returned Format [:MARKer:X2Position] <Bx_position><NL>

Example This example returns the current position of the Bx marker to the numeric variable,
Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MARKER:X2POSITION?"
30 ENTER 707;Value
40 PRINT Value
50 END

21-14

Marker Commands
X1Y1source

X1Y1source

Command :MARKer:X1Y1source {CHANnel<N> | COMMonmode<P> |
DIFFerential<P> | FUNCtion<N> | WMEMory<N> | CLOCk
| MTRend | MSPectrum | EQUalized | HISTogram}

The :MARKer:X1Y1source command sets the source for the Ax and Ay markers.
The channel you specify must be enabled for markers to be displayed. If the channel,
function, or waveform memory that you specify is not on, an error message is issued
and the query will return channel 1.
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

Integers, 1 - 4, representing the selected function or waveform memory.

<P> An integer, 1 - 2.

Example This example selects channel 1 as the source for markers Ax and Ay.
10 OUTPUT 707;":MARKER:X1Y1SOURCE CHANNEL1"
20 END

Query :MARKer:X1Y1source?

21-15

Marker Commands
X1Y1source

The :MARKer:X1Y1source? query returns the current source for markers
Ax and Ay.

Returned Format [:MARKer:X1Y1source] {CHANnel<N> | COMMonmode<P> |
DIFFerential<P> | FUNCtion<N> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized | HISTogram}<NL>

Example This example returns the current source selection for the Ax and Ay markers to the
string variable, Selection$, then prints the contents of the variable to the computer's
screen.
10 DIM Selection$[50]!Dimension variable
20 OUTPUT 707;":MARKER:X1Y1SOURCE?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

21-16

Marker Commands
X2Y2source

X2Y2source

Command :MARKer:X2Y2source {CHANnel<N> | COMMonmode<P> |
DIFFerential<P> | FUNCtion<N> | WMEMory<N> | CLOCk
| MTRend | MSPectrum | EQUalized | HISTogram}

The :MARKer:X2Y2source command sets the source for the Bx and By markers.
The channel you specify must be enabled for markers to be displayed. If the channel,
function, or waveform memory that you specify is not on, an error message is issued
and the query will return channel 1.
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

Integers, 1 - 4, representing the selected function or waveform memory.

<P> An integer, 1 - 2.

Example This example selects channel 1 as the source for markers Bx and By.
10 OUTPUT 707;":MARKER:X2Y2SOURCE CHANNEL1"
20 END

Query :MARKer:X2Y2source?

21-17

Marker Commands
X2Y2source

The :MARKer:X2Y2source? query returns the current source for markers
Bx and By.

Returned Format [:MARKer:X2Y2source] {CHANnel<N> | COMMonmode<P> |
DIFFerential<P> | FUNCtion<N> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized | HISTogram}<NL>

Example This example returns the current source selection for the Bx and By markers to the
string variable, Selection$, then prints the contents of the variable to the computer's
screen.
10 DIM Selection$[50]!Dimension variable
20 OUTPUT 707;":MARKER:X2Y2SOURCE?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

21-18

Marker Commands
XDELta?

XDELta?

Query :MARKer:XDELta?

The :MARKer:XDELta? query returns the time difference between Ax and Bx time
markers.
Xdelta = time at Bx − time at Ax

Returned Format [:MARKer:XDELta] <time><NL>

<time> Time difference between Ax and Bx time markers in seconds.

Example This example returns the current time between the Ax and Bx time markers to the
numeric variable, Time, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MARKER:XDELTA?"
30 ENTER 707;Time
40 PRINT Time
50 END

21-19

Marker Commands
Y1Position

Y1Position

Command :MARKer:Y1Position <Ay_position>

The :MARKer:Y1Position command sets the Ay marker position on the specified
source.

<Ay_position> A real number for the current measurement unit value at Ay (volts, amps, or watts).

Example This example sets the Ay marker to 10 mV.
10 OUTPUT 707;":MARKER:Y1POSITION 10E-3"
20 END

Query :MARKer:Y1Position?

The :MARKer:Y1Position? query returns the current measurement unit level at the
Ay marker position.

Returned Format [:MARKer:Y1Position] <Ay_position><NL>

Example This example returns the current setting of the Ay marker to the numeric variable,
Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MARKER:Y1POSITION?"
30 ENTER 707;Value
40 PRINT Value
50 END

21-20

Marker Commands
Y2Position

Y2Position

Command :MARKer:Y2Position <By_position>

The :MARKer:Y2Position command sets the By marker position on the specified
source.

<By_position> A real number for the current measurement unit value at By (volts, amps, or watts).

Example This example sets the By marker to -100 mV.
10 OUTPUT 707;":MARKER:Y2POSITION -100E-3"
20 END

Query :MARKer:Y2Position?

The :MARKer:Y2Position? query returns the current measurement unit level at the
By marker position.

Returned Format [:MARKer:Y2Position] <By_position><NL>

Example This example returns the current setting of the By marker to the numeric variable,
Value, then prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MARKER:Y2POSITION?"
30 ENTER 707;Value
40 PRINT Value
50 END

21-21

Marker Commands
YDELta?

YDELta?

Query :MARKer:YDELta?

The :MARKer:YDELta? query returns the current measurement unit difference
between Ay and By.
Ydelta = value at By − value at Ay

Returned Format [:MARKer:YDELta] <value><NL>

<value> Measurement unit difference between Ay and By.

Example This example returns the voltage difference between Ay and By to the numeric
variable, Volts, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MARKER:YDELTA?"
30 ENTER 707;Volts
40 PRINT Volts
50 END

21-22

Marker Commands
YDELta?

22

Mask Test Commands

22-2

Mask Test Commands

The MTESt subsystem commands and queries control the mask test features.
Mask Testing automatically compares measurement results with the
boundaries of a set of polygons that you define. Any waveform or sample
that falls within the boundaries of one or more polygons is recorded as a
failure.

These MTESt commands and queries are implemented in the Infiniium
Oscilloscopes. The FOLDing command is only available when the E2688A
Clock Recovery Software is installed.

• ALIGn
• AlignFIT
• AMASk:CREate
• AMASk:SOURce
• AMASk:SAVE | STORe
• AMASk:UNITs
• AMASk:XDELta
• AMASk:YDELta
• AUTO
• AVERage
• AVERage:COUNt
• COUNt:FAILures?
• COUNt:FUI?
• COUNt:FWAVeforms?
• COUNt:UI?
• COUNt:WAVeforms?
• DELete
• ENABle
• FOLDing (Clock Recovery software only)
• HAMPlitude
• IMPedance
• INVert
• LAMPlitude

22-3

• LOAD
• NREGions?
• PROBe:IMPedance?
• RUMode
• RUMode:SOFailure
• SCALe:BIND
• SCALe:X1
• SCALe:XDELta
• SCALe:Y1
• SCALe:Y2
• SOURce
• STARt | STOP
• STIMe
• TITLe?
• TRIGger:SOURce

22-4

Mask Test Commands
ALIGn

ALIGn

Command :MTESt:ALIGn

The :MTESt:ALIGn command automatically aligns and scales the mask to the current
waveform on the display. The type of mask alignment performed depends on the
current setting of the Use File Setup When Aligning control. See the :MTESt:AUTO
command for more information.

Example This example aligns the current mask to the current waveform.
10 Output 707;":MTEST:ALIGN"
20 END

22-5

Mask Test Commands
AlignFIT

AlignFIT

Command :MTESt:AlignFIT {EYEAMI | EYECMI | EYENRZ | FANWidth
| FAPeriod | FAPWidth | FYNWidth | FYPWidth | NONE
| NWIDth | PWIDth | TMAX | TMIN}

The :MTESt:AlignFIT command specifies the alignment type for aligning a mask to
a waveform. The pulse mask standard has rules that determine which controls the
oscilloscope can adjust or change during the alignment process. An X in a column
indicates that the control can be adjusted for each of the alignment types of Table 21-1.

Table 22-1 Available Alignment Types

Alignment
Type

Waveform
Type

Horizontal
Position

0 Level
Voltage

1 Level
Voltage

Vertical
Offset

Invert
Waveform

EYEAMI AMI X X X

EYECMI CMI X X X

EYENRZ NRZ X X X

FANWidth Negative X X X

FAPeriod Full Period X X

FAPWidth Positive X X X

FYNWidth Negative X X X

FYPWidth Positive X X X

NONE Automask

NWIDth Negative
Pulse

X X X X

PWIDth Positive
Pulse

X X X X

TMAX Positive Sine
Pulse

X X X X

TMIN Negative
Sine Pulse

X X X X

22-6

Mask Test Commands
AlignFIT

Example This example specifies the alignment type to be EYEAMI.
10 Output 707;":MTEST:ALIGNFIT EYEAMI"
20 END

Query :MTESt:AlignFIT?

The :MTEST:AlignFIT? query returns the alignment type used for the mask.

Returned Format [:MTESt:AlignFIT] {EYEAMI | EYECMI | EYENRZ |
FANWidth | FAPeriod | FAPWidth | FYNWidth |
FYPWidth | NONE | NWIDth | PWIDth | TMAX | TMIN}<NL>

22-7

Mask Test Commands
AMASk:CREate

AMASk:CREate

Command :MTESt:AMASk:CREate

The :MTESt:AMASk:CREate command automatically constructs a mask around the
current selected channel, using the tolerance parameters defined by the
AMASk:XDELta, AMASk:YDELta, and AMASk:UNITs commands. The mask
only encompasses the portion of the waveform visible on the display, so you must
ensure that the waveform is acquired and displayed consistently to obtain repeatable
results.
The :MTESt:SOURce command selects the channel and should be set before using
this command.

Example This example creates an automask using the current XDELta and YDELta units
settings.
10 OUTPUT 707;":MTEST:AMASK:CREATE"
20 END

22-8

Mask Test Commands
AMASk:SOURce

AMASk:SOURce

Command :MTESt:AMASk:SOURce {CHANnel<number> | COMMonmode<P>
| DIFFerential<P> | WMEMory<N> | FUNCtion<N> | CLOCk
| EQUalized | MTRend | MSPectrum}

The :MTESt:AMASk:SOURce command selects the source for the interpretation of
the AMASk:XDELta and AMASk:YDELta parameters when AMASk:UNITs is set
to CURRent. When UNITs are CURRent, the XDELta and YDELta parameters are
defined in terms of the channel units, as set by the :CHANnel:UNITs command, of
the selected source. Suppose that UNITs are CURRent and that you set SOURce to
CHANNEL1, which is using units of volts. Then you can define AMASk:XDELta
in terms of volts and AMASk:YDELta in terms of seconds.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).

<number> An integer, 1 through 4.

<P> An integer, 1 - 2.

Example This example sets the automask source to Channel 1.
10 OUTPUT 707;"MTEST:AMASK:SOURCE CHANNEL1"
20 END

Query :MTESt:AMASk:SOURce?

The :MTESt:AMASk:SOURce? query returns the currently set source.

Returned Format [:MTESt:AMASk:SOURce] {CHANnel<number> | COMMonmode<P> |
DIFFerential<P> | WMEMory<N> | FUNCtion<N> | CLOCk | EQUalized

22-9

Mask Test Commands
AMASk:SOURce

| MTRend | MSPectrum}<NL>

Example This example gets the source setting for automask and prints the result on the computer
display.
10 DIM Amask_source$[30]
20 OUTPUT 707;"MTEST:AMASK:SOURCE?"
30 ENTER 707;Amask_source$
40 PRINT Amask_source$
50 END

22-10

Mask Test Commands
AMASk:SAVE | STORe

AMASk:SAVE | STORe

Command :MTESt:AMASk:{SAVE | STORe} "<filename>"

The :MTESt:AMASk:SAVE command saves the automask generated mask to a file.
If an automask has not been generated, an error occurs.

<filename> An MS-DOS compatible name of the file, a maximum of 254 characters long
(including the path name, if used). The filename assumes the present working
directory if a path does not precede the file name. The default save path is
C:\Documents and Settings\All Users\Documents\Infiniium\masks. The filename
must have a .msk or .MSK extension or the command will fail.

Example This example saves the automask generated mask to a file named "FILE1.MSK".
10 OUTPUT 707;":MTEST:AMASK:SAVE""FILE1.MSK"""
20 END

22-11

Mask Test Commands
AMASk:UNITs

AMASk:UNITs

Command :MTESt:AMASk:UNITs {CURRent | DIVisions}

The :MTESt:AMASk:UNITs command alters the way the mask test subsystem
interprets the tolerance parameters for automasking as defined by AMASk:XDELta
and AMASk:YDELta commands.

CURRent When set to CURRent, the mask test subsystem uses the units as set by the
:CHANnel:UNITs command, usually time for ΔX and voltage for ΔY.

DIVisions When set to DIVisions, the mask test subsystem uses the graticule as the measurement
system, so tolerance settings are specified as parts of a screen division. The mask test
subsystem maintains separate XDELta and YDELta settings for CURRent and
DIVisions. Thus, XDELta and YDELta are not converted to new values when the
UNITs setting is changed.

Example This example sets the measurement units for automasking to the current
:CHANnel:UNITs setting.
10 OUTPUT 707;"MTEST:AMASK:UNITS CURRENT"
20 END

Query :MTESt:AMASk:UNITs?

The AMASk:UNITs query returns the current measurement units setting for the mask
test automask feature.

Returned Format [:MTESt:AMASk:UNITs] {CURRent | DIVision}<NL>

Example This example gets the automask units setting, then prints the setting on the screen of
the computer.
10 DIM Automask_units$[10]
20 OUTPUT 707;"MTEST:AMASK:UNITS?"
30 ENTER 707;Automask_units$
40 PRINT Automask_units$
50 END

22-12

Mask Test Commands
AMASk:XDELta

AMASk:XDELta

Command :MTESt:AMASk:XDELta <xdelta_value>

The :MTESt:AMASk:XDELta command sets the tolerance in the X direction around
the waveform for the automasking feature. The absolute value of the tolerance will
be added and subtracted to horizontal values of the waveform to determine the
boundaries of the mask.

<xdelta_value> A value for the horizontal tolerance. This value is interpreted based on the setting
specified by the AMASk:UNITs command; thus, if you specify 250-E3, the setting
for AMASk:UNITs is CURRent, and the current setting specifies time in the
horizontal direction, the tolerance will be ±250 ms. If the setting for AMASk:UNITs
is DIVisions, the same xdelta_value will set the tolerance to ±250 millidivisions, or
1/4 of a division.

Example This example sets the units to divisions and sets the ΔX tolerance to one-eighth of a
division.
10 OUTPUT 707;"MTEST:AMASK:UNITS DIVISIONS"
20 OUTPUT 707;":MTEST:AMASK:XDELTA 125E-3"
30 END

22-13

Mask Test Commands
AMASk:XDELta

Query :MTESt:AMASk:XDELta?

The AMASk:XDELta? query returns the current setting of the ΔX tolerance for
automasking. If your computer program will interpret this value, it should also request
the current measurement system using the AMASk:UNITs query.

Returned Format [:MTESt:AMASk:XDELta] <xdelta_value><NL>

Example This example gets the measurement system units and ΔX settings for automasking
from the oscilloscope and prints the results on the computer screen.
10 DIM Automask_units$[10]
20 DIM Automask_xdelta$[20]
30 OUTPUT 707;"MTEST:AMASK:UNITS?"
40 ENTER 707;Automask_units$
50 OUTPUT 707;":MTEST:AMASK:XDELTA?"
60 ENTER 707;Automask_xdelta$
70 PRINT Automask_units$
80 PRINT Automask_xdelta$
90 END

22-14

Mask Test Commands
AMASk:YDELta

AMASk:YDELta

Command :MTESt:AMASk:YDELta <ydelta_value>

The :MTESt:AMASk:YDELta command sets the vertical tolerance around the
waveform for the automasking feature. The absolute value of the tolerance will be
added and subtracted to vertical values of the waveform to determine the boundaries
of the mask.
This command requires that mask testing be enabled, otherwise a settings conflict
error message is displayed. See :MTESt:ENABle for information on enabling mask
testing.

<ydelta_value> A value for the vertical tolerance. This value is interpreted based on the setting
specified by the AMASk:UNITs command; thus, if you specify 250-E3, the setting
for AMASk:UNITs is CURRent, and the current setting specifies voltage in the
vertical direction, the tolerance will be ±250 mV. If the setting for AMASk:UNITs
is DIVisions, the same ydelta_value will set the tolerance to ±250 millidivisions, or
1/4 of a division.

Example This example sets the units to current and sets the ΔY tolerance to 30 mV, assuming
that the current setting specifies volts in the vertical direction.
10 OUTPUT 707;"MTEST:AMASK:UNITS CURRENT"
20 OUTPUT 707;":MTEST:AMASK:YDELTA 30E-3"
30 END

22-15

Mask Test Commands
AMASk:YDELta

Query :MTESt:AMASk:YDELta?

The AMASk:YDELta? query returns the current setting of the ΔY tolerance for
automasking. If your computer program will interpret this value, it should also request
the current measurement system using the AMASk:UNITs query.

Returned Format [:MTESt:AMASk:YDELta] <ydelta_value><NL>

Example This example gets the measurement system units and ΔY settings for automasking
from the oscilloscope and prints the results on the computer screen.
10 DIM Automask_units$[10]
20 DIM Automask_ydelta$[20]
30 OUTPUT 707;"MTEST:AMASK:UNITS?"
40 ENTER 707;Automask_units$
50 OUTPUT 707;":MTEST:AMASK:YDELTA?"
60 ENTER 707;Automask_ydelta$
70 PRINT Automask_units$
80 PRINT Automask_ydelta$
90 END

22-16

Mask Test Commands
AUTO

AUTO

Command :MTESt:AUTO {{ON | 1} | {OFF | 0}}

The :MTESt:AUTO command enables (ON) or disables (OFF) the Use File Setup
When Aligning control. This determines which type of mask alignment is performed
when the :MTESt:ALIGn command is sent. When enabled, the oscilloscope controls
are changed to the values which are determined by the loaded mask file. This
alignment guarantees that the aligned mask and any subsequent mask tests meet the
requirements of the standard.
When disabled, the alignment is performed using the current oscilloscope settings.
This may be useful when troubleshooting problems during the design phase of a
project.

Example This example enables the Use File Settings When Aligning control.
10 OUTPUT 707;"MTEST:AUTO ON"
20 END

Query :MTESt:AUTO?

The :MTESt:AUTO? query returns the current value of the Use File Setup When
Aligning control.

Returned Format [:MTESt:AUTO] {1 | 0} <NL>

Example 10 OUTPUT 707;":MTEST:AUTO?"
20 ENTER 707;Value
30 PRINT Value
40 END

22-17

Mask Test Commands
AVERage

AVERage

Command :MTESt:AVERage {{ON | 1} | {OFF | 0}}

The :MTESt:AVERage command enables or disables averaging. When ON, the
oscilloscope acquires multiple data values for each time bucket, and averages them.
When OFF, averaging is disabled. To set the number of averages, use the
:MTESt:AVERage:COUNt command described next.
The :ACQuire:AVERage command performs the same function as this command.
Averaging is not available in PDETect mode.

Example This example turns averaging on.
10 OUTPUT 707;"MTEST:AVERAGE ON"
20 END

Query :MTESt:AVERage?

The :MTESt:AVERage? query returns the current setting for averaging.

Returned Format [:MTESt:AVERage] {1 | 0} <NL>

Example This example places the current settings for averaging into the string variable,
Setting$, then prints the contents of the variable to the computer’s screen.
10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;"MTEST:AVERAGE?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

22-18

Mask Test Commands
AVERage:COUNt

AVERage:COUNt

Command :MTESt:AVERage:COUNt <count_value>

The :MTESt:AVERage:COUNt command sets the number of averages for the
waveforms. In the AVERage mode, the :MTESt:AVERage:COUNt command
specifies the number of data values to be averaged for each time bucket before the
acquisition is considered complete for that time bucket.
The :ACQuire:AVERage:COUNt command performs the same function as this
command.

<count_value> An integer, 2 to 65534, specifying the number of data values to be averaged.

Example This example specifies that 16 data values must be averaged for each time bucket to
be considered complete. The number of time buckets that must be complete for the
acquisition to be considered complete is specified by the :MTESt:COMPlete
command.
10 OUTPUT 707;":MTESt:AVERage:COUNT 16"
20 END

Query :MTESt:AVERage:COUNt?

The :MTESt:AVERage:COUNt? query returns the currently selected count value.

Returned Format [:MTESt:AVERage:COUNt] <value><NL>

<value> An integer, 2 to 65534, specifying the number of data values to be averaged.

Example This example checks the currently selected count value and places that value in the
string variable, Result$. The program then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF”
20 OUTPUT 707;":MTEST:AVERAGE:COUNT?"
30 ENTER 707;Result
40 PRINT Result
50 END

22-19

Mask Test Commands
COUNt:FAILures?

COUNt:FAILures?

Query :MTESt:COUNt:FAILures? REGion<number>

The MTESt:COUNt:FAILures? query returns the number of failures that occurred
within a particular mask region.
The value 9.999E37 is returned if mask testing is not enabled or if you specify a region
number that is unused.

<number> An integer, 1 through 8, designating the region for which you want to determine the
failure count.

Returned Format [:MTESt:COUNt:FAILures] REGion<number><number_of_failures>
<NL>

<number_of_
failures>

The number of failures that have occurred for the designated region.

Example This example determines the current failure count for region 3 and prints it on the
computer screen.
10 DIM Mask_failures$[50]
20 OUTPUT 707;"MTEST:COUNT:FAILURES? REGION3"
30 ENTER 707;Mask_failures$
40 PRINT Mask_failures$
50 END

22-20

Mask Test Commands
COUNt:FUI?

COUNt:FUI?

Query :MTESt:COUNt:FUI?

The MTESt:COUNt:FUI? query returns the number of unit interval failures that have
occured.

Returned Format [:MTESt:COUNt:FUI?] <unit_interval_failures> <NL>

<unit_interval_
failures>

The number of unit interval failures.

Example This example determines the current number of unit interval failures and prints it to
the computer screen.
10 DIM Failures$[50]
20 OUTPUT 707;"MTEST:COUNT:FUI?"
30 ENTER 707;Failures$
40 PRINT Failures$
50 END

22-21

Mask Test Commands
COUNt:FWAVeforms?

COUNt:FWAVeforms?

Query :MTESt:COUNt:FWAVeforms?

The :MTESt:COUNt:FWAVeforms? query returns the total number of failed
waveforms in the current mask test run. This count is for all regions and all
waveforms, so if you wish to determine failures by region number, use the
COUNt:FAILures? query.
This count may not always be available. It is available only when the following
conditions are true:
• Mask testing was turned on before the histogram or color grade persistence, and
• No mask changes have occurred, including scaling changes, editing, or new masks.
The value 9.999E37 is returned if mask testing is not enabled, or if you have modified
the mask.

Returned Format [:MTESt:COUNt:FWAVeforms] <number_of_failed_waveforms><NL>

<number_
of_failed_
waveforms> The total number of failed waveforms for the current test run.

Example This example determines the number of failed waveforms and prints the result on the
computer screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MTEST:COUNT:FWAVEFORMS?
30 ENTER 707;Mask_fwaveforms$
40 PRINT Mask_fwaveforms$
50 END

22-22

Mask Test Commands
COUNt:UI?

COUNt:UI?

Query :MTESt:COUNt:UI?

The MTESt:COUNt:UI? query returns the number of unit intervals that have been
mask tested.

Returned Format [:MTESt:COUNt:UI?] <unit_intervals_tested> <NL>

<unit_intervals
_tested>

The number of unit intervals tested.

Example This example determines the current number of unit intervals tested and prints it to
the computer screen.
10 DIM Unit_intervals$[50]
20 OUTPUT 707;"MTEST:COUNT:uUI?"
30 ENTER 707;Unit_intervals$
40 PRINT Unit_intervals$
50 END

22-23

Mask Test Commands
COUNt:WAVeforms?

COUNt:WAVeforms?

Query :MTESt:COUNt:WAVeforms?

The :MTESt:COUNt:WAVeforms? query returns the total number of waveforms
acquired in the current mask test run. The value 9.999E37 is returned if mask testing
is not enabled.

Returned Format [:MTESt:COUNt:WAVeforms] <number_of_waveforms><NL>

<number_of_
waveforms> The total number of waveforms for the current test run.

Example This example determines the number of waveforms acquired in the current test run
and prints the result on the computer screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MTEST:COUNT:WAVEFORMS?"
30 ENTER 707;Mask_waveforms
40 PRINT Mask_waveforms
50 END

22-24

Mask Test Commands
DELete

DELete

Command :MTESt:DELete

The :MTESt:DELete command clears the currently loaded mask.

Example This example clears the currently loaded mask.
10 OUTPUT 707;"MTEST:DELETE"
20 END

22-25

Mask Test Commands
ENABle

ENABle

Command :MTESt:ENABle {{ON | 1} | {OFF | 0}}

The :MTESt:ENABle command enables or disables the mask test features.

ON Enables the mask test features.

OFF Disables the mask test features.

Example This example enables the mask test features.
10 OUTPUT 707;":MTEST:ENABLE ON"
20 END

Query :MTESt:ENABle?

The :MTESt:ENABle? query returns the current state of mask test features.

Returned Format [MTESt:ENABle] {1 | 0}<NL>

Example This example places the current value of the mask test state in the numeric variable
Value, then prints the contents to the computer’s screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF
20 OUTPUT 707;":MTEST:ENABLE?"
30 ENTER 707;Value
40 PRINT Value
50 END

22-26

Mask Test Commands
FOLDing

FOLDing

Command :MTESt:FOLDing {{ON | 1} | {OFF | 0}}

The :MTESt:FOLDing command enables (ON) or disables (OFF) the display of the
real time eye. When enabled, an eye diagram of the data.

Example This example enables the display of the real time eye.
10 OUTPUT 707;"MTEST:FOLDING ON"
20 END

Query :MTESt:FOLDing?

The :MTESt:FOLDing? query returns the current state of clock recovery folding.

Returned Format [:MTESt:FOLDing] {1 | 0} <NL>

Example 10 OUTPUT 707;":MTEST:FOLDING?"
20 ENTER 707;Value
30 PRINT Value
40 END

This command is only available when the E2688A Clock Recovery Software is
installed.

22-27

Mask Test Commands
FOLDing:BITS

FOLDing:BITS

Command :MTESt:FOLDing:BITS {BOTH | DEEMphasis | TRANsition}

The :MTESt:FOLDing:BITS command determines the type of data bits used to create
the eye pattern. The transition bits are greater in amplitude than the deemphasis bits.
The PCI Express standard requires that compliance mask testing be done for both bit
types.

Example This example sets bit type to transition bits.
10 OUTPUT 707;"MTEST:FOLDING:BITS TRANSITION"
20 END

Query :MTESt:FOLDing:BITS?

The :MTESt:FOLDing:BITS? query returns the current setting of the real time eye
bits.

Returned Format [:MTESt:FOLDing:BITS] {BOTH | DEEMphasis | TRANsition} <NL>

Example 10 OUTPUT 707;":MTEST:FOLDING:BITS?"
20 ENTER 707;Value
30 PRINT Value
40 END

This command is only available when the E2688A Clock Recovery Software is
installed.

22-28

Mask Test Commands
HAMPlitude

HAMPlitude

Command :MTESt:HAMPlitude <upper_limit>

The :MTESt:HAMPlitude command sets the maximum pulse amplitude value that
passes the pulse standard. For some of the pulse communications standards, a pulse
has a range of amplitude values and still passes the standard. This command sets the
upper limit used during mask testing.

<upper_limit> A real number that represents the maximum amplitude in volts of a pulse as allowed
by the pulse standard.

Example This example sets the maximum pulse amplitude to 3.6 volts.
10 OUTPUT 707;"MTEST:HAMPLITUDE 3.6"
20 END

Query :MTESt:HAMPlitude?

The :MTESt:HAMPlitude? query returns the current value of the maximum pulse
amplitude.

Returned Format [MTESt:HAMPlitude] <upper_limit><NL>

<upper_limit> A real number that represents the maximum amplitude in volts of a pulse as allowed
by the pulse standard.

Example This example returns the current upper pulse limit and prints it to the computer’s
screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;"MTEST:HAMPLITUDE?"
30 ENTER 707;ULimit
40 PRINT ULimit
50 END

22-29

Mask Test Commands
IMPedance

IMPedance

Command :MTESt:IMPedance {NONE | IMP75 | IMP100 | IMP110 |
IMP120}

The :MTESt:IMPedance command sets the desired probe impedance of the channel
being used for mask testing. This impedance value is used when starting a mask test
to determine whether or not the correct Infiniium probe is connected and in the case
of the E2621A if the switch is set to the correct impedance value.
Infiniium has an AutoProbe interface that detects probes that have Probe ID resistors.
If one of these probes is connected to the channel being mask tested and is not the
correct probe for the selected impedance, a warning dialog box appears when the mask
test is started from the human interface.
This command is meant to be used in the setup section of a mask file.

NONE Disables the probe impedance check.

IMP75 Enables the probe impedance check for the E2622A probe.

IMP100 Enables the probe impedance check for the E2621A probe with the switch set to the
100 ohm position.

IMP110 Enables the probe impedance check for the E2621A probe with the switch set to the
110 ohm position.

IMP120 Enables the probe impedance check for the E2621A probe with the switch set to the
120 ohm position.

Example This example sets the probe impedance of the channel being used for mask testing to
100 ohms.
10 OUTPUT 707;"MTEST:IMPEDANCE IMP100"
20 END

22-30

Mask Test Commands
IMPedance

Query :MTESt:IMPedance?

The :MTESt:IMPedance? query returns the current value of the mask test impedance.

Returned Format [:MTESt:IMPedance] {NONE | IMP75 | IMP100 |
IMP110 | IMP120}<NL>

Example This example returns the current value of the mask test impedance and prints the result
to the computer screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MTEST:IMPEDANCE?"
30 ENTER 707;Impedance
40 PRINT Impedance
50 END

22-31

Mask Test Commands
INVert

INVert

Command :MTESt:INVert {{ON | 1} | {OFF | 0}}

The :MTESt:INVert command inverts the mask for testing negative-going pulses. The
trigger level and mask offset are also adjusted. Not all masks support negative-going
pulse testing, and for these masks, the command is ignored.

Example This example inverts the mask for testing negative-going pulses.
10 OUTPUT 707;"MTEST:INVERT ON"
20 END

Query :MTESt:INVert?

The :MTESt:INVert? query returns the current inversion setting.

Returned Format [:MTESt:INVert] {1 | 0}<NL>

22-32

Mask Test Commands
LAMPlitude

LAMPlitude

Command :MTESt:LAMPlitude <lower_limit>

The :MTESt:LAMPlitude command sets the minimum pulse amplitude value that
passes the pulse standard. For some of the pulse communications standards, a pulse
has a range of amplitude values and still passes the standard. This command sets the
lower limit used during mask testing.

<lower_limit> A real number that represents the minimum amplitude in volts of a pulse as allowed
by the pulse standard.

Example This example sets the minimum pulse amplitude to 2.4 volts.
10 OUTPUT 707;"MTEST:LAMPLITUDE 2.4"
20 END

Query :MTESt:LAMPlitude?

The :MTESt LAMPlitude? query returns the current value of the minimum pulse
amplitude.

Returned Format [:MTESt:LAMPlitude] <lower_limit><NL>

<lower_limit> A real number that represents the minimum amplitude in volts of a pulse as allowed
by the pulse standard.

Example This example returns the current lower pulse limit and prints it to the computer’s
screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF !Response headers off
20 OUTPUT 707;"MTEST:LAMPLITUDE?"
30 ENTER 707;ULimit
40 PRINT ULimit
50 END

22-33

Mask Test Commands
LOAD

LOAD

Command :MTESt:LOAD "<filename>"

The :MTESt:LOAD command loads the specified mask file. The default path for
mask files is C:\Documents and Settings\All Users\Documents\Infiniium\MASKS.
To use a different path, specify the complete path and file name.

<filename> An MS-DOS compatible name of the file, a maximum of 254 characters long
(including the path name, if used).

Example This example loads the mask file named "140md_itu_1.msk".
10 OUTPUT 707;"MTEST:LOAD""c:\Documents and Settings\All
Users\Documents\Infiniium\masks\140md_itu_1.msk"""
20 END

22-34

Mask Test Commands
NREGions?

NREGions?

Query :MTESt:NREGions?

The :MTESt:NREGions? query returns the number of regions that define the mask.

Returned Format [:MTESt:NREGions] <regions><NL>

<regions> An integer from 0 to 8.

Example This example returns the number of mask regions.
10 OUTPUT 707;":SYSTEM:HEADER OFF"
20 OUTPUT 707;":MTEST:NREGIONS?"
30 ENTER 707;Regions
40 PRINT Regions
50 END

22-35

Mask Test Commands
PROBe:IMPedance?

PROBe:IMPedance?

Query :MTESt:PROBe:IMPedance?

The :MTESt:PROBe:IMPedance? query returns the impedance setting for the
E2621A and E2622A probes for the current mask test channel.

Returned Format [:MTESt:PROBe:IMPedance] <impedance><NL>

<impedance> An unquoted string: 75, 100, 110, 120, or NONE

Example This example returns the impedance setting for the probe.
10 DIM Impedance$[20]
20 OUTPUT 707;":SYSTEM:HEADER OFF"
30 OUTPUT 707;":MTEST:PROBE:IMPEDANCE?"
40 ENTER 707;Impedance$
50 PRINT Impedance$
60 END

22-36

Mask Test Commands
RUMode

RUMode

Command :MTESt:RUMode {FORever | TIME, <time> | {WAVeforms,
<number_of_waveforms>}}

The :MTESt:RUMode command determines the termination conditions for the mask
test. The choices are FORever, TIME, or WAVeforms.
If WAVeforms is selected, a second parameter is required indicating the number of
failures that can occur or the number of samples or waveforms that are to be acquired.

FORever FORever runs the Mask Test until the test is turned off. This is used when you want
a measurement to run continually and not to stop after a fixed number of failures. For
example, you may want the Mask Test to run overnight and not be limited by a number
of failures.

TIME TIME sets the amount of time in minutes that a mask test will run before it terminates.

<time> A real number: 0.1 to 1440.0

 WAVeforms WAVeforms sets the maximum number of waveforms that are required before the
mask test terminates.

<number_of_
waveforms>

An integer: 1 to 1,000,000,000.

Example This example sets the mask test subsystem run until mode to continue testing until
500,000 waveforms have been gathered.
10 OUTPUT 707;"MTEST:RUMODE WAVEFORMS,500E3"
20 END

22-37

Mask Test Commands
RUMode

Query :MTESt:RUMode?

The query returns the currently selected termination condition and value.

Returned Format [:MTESt:RUMode] {FORever | TIME,<time> | {WAVeforms,
<number_of_waveforms>}}<NL>

Example This example gets the current setting of the mask test run until mode from the
oscilloscope and prints it on the computer screen.
10 DIM MTEST_Runmode$[50]
20 OUTPUT 707; "MTEST:RUMODE?"
30 ENTER 707;":MTEST_Runmode$
40 PRINT MTEST_Runmode$
50 END

22-38

Mask Test Commands
RUMode:SOFailure

RUMode:SOFailure

Command :MTESt:RUMode:SOFailure {{ON | 1} | {OFF | 0}}

The :MTESt:RUMode:SOFailure command enables or disables the Stop On Failure
run until criteria. When a mask test is run and a mask violation is detected, the mask
test is stopped and the acquisition system is stopped.

Example This example enables the Stop On Failure run until criteria.
10 OUTPUT 707;":MTEST:RUMODE:SOFAILURE ON"
20 END

Query :MTESt:SOFailure?

The :MTESt:SOFailure? query returns the current state of the Stop on Failure control.

Returned Format [:MTESt:SOFailure] {1 | 0}<NL>

22-39

Mask Test Commands
SCALe:BIND

SCALe:BIND

Command :MTESt:SCALe:BIND {{ON | 1} | {OFF | 0}}

The :MTESt:SCALe:BIND command enables or disables Bind 1 & 0 Levels (Bind -
1 & 0 Levels for inverted masks) control. If the Bind 1 & 0 Levels control is enabled,
the 1 Level and the 0 Level controls track each other. Adjusting either the 1 Level or
the 0 Level control shifts the position of the mask up or down without changing its
size. If the Bind 1 & 0 Levels control is disabled, adjusting either the 1 Level or the
0 Level control changes the vertical height of the mask.
If the Bind -1 & 0 Levels control is enabled, the -1 Level and the 0 Level controls
track each other. Adjusting either the -1 Level or the 0 Level control shifts the position
of the mask up or down without changing its size. If the Bind -1 & 0 Levels control
is disabled, adjusting either the -1 Level or the 0 Level control changes the vertical
height of the mask.

Example This example enables the Bind 1 & 0 Levels control.
10 OUTPUT 707;"MTEST:SCALE:BIND ON"
20 END

Query :MTESt:SCALe:BIND?

The :MTESt:SCALe:BIND? query returns the value of the Bind 1&0 control (Bind -
1&0 for inverted masks).

Returned Format [:MTESt:SCALe:BIND?] {1 | 0}<NL>

22-40

Mask Test Commands
SCALe:X1

SCALe:X1

Command :MTESt:SCALe:X1 <x1_value>

The :MTESt:SCALe:X1 command defines where X=0 in the base coordinate system
used for mask testing. The other X-coordinate is defined by the SCALe:XDELta
command. Once the X1 and XDELta coordinates are set, all X values of vertices in
the mask regions are defined with respect to this value, according to the equation:

Thus, if you set X1 to 100 ms, and XDELta to 100 ms, an X value of 0.100 is a vertex
at 110 ms.
The oscilloscope uses this equation to normalize vertices. This simplifies
reprogramming to handle different data rates. For example, if you halve the period
of the waveform of interest, you need only to adjust the XDELta value to set up the
mask for the new waveform.

<x1_value> A time value specifying the location of the X1 coordinate, which will then be treated
as X=0 for mask regions coordinates.

Example This example sets the X1 coordinate at 150 ms.
10 OUTPUT 707;":MTEST:SCALE:X1 150E-3"
20 END

Query :MTESt:SCALe:X1?

The :MTESt:SCALe:X1? query returns the current X1 coordinate setting.

Returned Format [:MTESt:SCALe:X1] <x1_value><NL>

Example This example gets the current setting of the X1 coordinate from the oscilloscope and
prints it on the computer screen.
10 DIM Scale_x1$[50]
20 OUTPUT 707;":MTEST:SCALE:X1?"
30 ENTER 707;Scale_x1$
40 PRINT Scale_x1$
50 END

X X ΔX×() X1+=

22-41

Mask Test Commands
SCALe:XDELta

SCALe:XDELta

Command :MTESt:SCALe:XDELta <xdelta_value>

The :MTESt:SCALe:XDELta command defines the position of the X2 marker with
respect to the X1 marker. In the mask test coordinate system, the X1 marker defines
where X=0; thus, the X2 marker defines where X=1.
Because all X vertices of the regions defined for mask testing are normalized with
respect to X1 and ΔX, redefining ΔX also moves those vertices to stay in the same
locations with respect to X1 and ΔX. Thus, in many applications, it is best if you
define XDELta as a pulse width or bit period. Then a change in data rate without
corresponding changes in the waveform can easily be handled by changing ΔX.
The X-coordinate of polygon vertices is normalized using this equation:

<xdelta_value> A time value specifying the distance of the X2 marker with respect to the X1 marker.

Example Assume that the period of the waveform you wish to test is 1 ms. Then the following
example will set ΔX to 1 ms, ensuring that the waveform’s period is between the X1
and X2 markers.
10 OUTPUT 707;":MTEST:SCALE:XDELTA 1E-6:
20 END

Query :MTESt:SCALe:XDELta?

The :MTESt:SCALe:XDELta? query returns the current value of ΔX.

Returned Format [:MTESt:SCALe:XDELta] <xdelta_value><NL>

Example This example gets the value of ΔX from the oscilloscope and prints it on the computer
screen.
10 DIM Scale_xdelta$[50]
20 OUTPUT 707;":MTEST:SCALE:XDELTA?"
30 ENTER 707;Scale_xdelta$
40 PRINT Scale_xdelta$
50 END

X X ΔX×() X1+=

22-42

Mask Test Commands
SCALe:Y1

SCALe:Y1

Command :MTESt:SCALe:Y1 <y_value>

The :MTESt:SCALe:Y1 command defines where Y=0 in the coordinate system for
mask testing. All Y values of vertices in the coordinate system are defined with respect
to the boundaries set by SCALe:Y1 and SCALe:Y2 according to the equation:

Thus, if you set Y1 to 100 mV, and Y2 to 1 V, a Y value of 0.100 in a vertex is at 190
mV.

<y1_value> A voltage value specifying the point at which Y=0.

Example This example sets the Y1 marker to -150 mV.
10 OUTPUT 707; ":MTEST:SCALE:Y1 -150E-3"
20 END

Query :MTESt:SCALe:Y1?

The SCALe:Y1? query returns the current setting of the Y1 marker.

Returned Format [:MTESt:SCALe:Y1] <y1_value><NL>

Example This example gets the setting of the Y1 marker from the oscilloscope and prints it on
the computer screen.
10 DIM Scale_y1$[50]
20 OUTPUT 707;":MTEST:SCALE:Y1?"
30 ENTER 707;Scale_y1$
40 PRINT Scale_y1$
50 END

Y Y Y2-Y1()×() Y1+=

22-43

Mask Test Commands
SCALe:Y2

SCALe:Y2

Command :MTESt:SCALe:Y2 <y2_value>

The :MTESt:SCALe:Y2 command defines the Y2 marker in the coordinate system
for mask testing. All Y values of vertices in the coordinate system are defined with
respect to the boundaries defined by SCALe:Y1 and SCALe:Y2 according to the
following equation:
Thus, if you set Y1 to 100 mV, and Y2 to 1 V, a Y value of 0.100 in a vertex is at 190
mV.

<y2_value> A voltage value specifying the location of the Y2 marker.

Example This example sets the Y2 marker to 2.5 V.
10 OUTPUT 707;":MTEST:SCALE:Y2 2.5"
20 END

Query :MTESt:SCALe:Y2?

The SCALe:Y2? query returns the current setting of the Y2 marker.

Returned Format [:MTESt:SCALe:Y2] <y2_value><NL>

Example This example gets the setting of the Y2 marker from the oscilloscope and prints it on
the computer screen.
10 DIM Scale_y2$[50]
20 OUTPUT 707;":MTEST:SCALE:Y2?"
30 ENTER 707;Scale_y2$
40 PRINT Scale_y2$
50 END

Y Y Y2-Y1()×() Y1+=

22-44

Mask Test Commands
SOURce

SOURce

Command :MTESt:SOURce {CHANnel<N> | COMMonmode<P> |
DIFFerential<P> | FUNCtion<N> | EQUalized}

The :MTESt:SOURce command selects the channel which is configured by the
commands contained in a mask file when it is loaded.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).

<N> An integer, 1 - 4.

<P> An integer, 1 - 2.

Example This example selects channel 1 as the mask test source.
10 OUTPUT 707; "MTEST:SOURCE CHANNEL1"
20 END

Query :MTESt:SOURce?

The :MTESt:SOURce? query returns the channel which is configured by the
commands contained in the current mask file.

Returned Format [:MTESt:SOURce] {CHANnel<N> | FUNCtion<N> | EQUalized}<NL>

Example This example gets the mask test source setting and prints the result on the computer
display.
10 DIM Amask_source$[30]
20 OUTPUT 707;"MTEST:SOURCE?"

22-45

Mask Test Commands
SOURce

30 ENTER 707;Amask_source$
40 PRINT Amask_source$
50 END

22-46

Mask Test Commands
STARt | STOP

STARt | STOP

Command :MTESt:{STARt | STOP}

The :MTESt:{STARt | STOP} command starts or stops the mask test. The
:MTESt:STARt command also starts the oscilloscope acquisition system. The
:MTESt:STOP command does not stop the acquisition system.

Example This example starts the mask test and acquisition system.
10 OUTPUT 707;"MTEST:START"
20 END

22-47

Mask Test Commands
STIMe

STIMe

Command :MTESt:STIMe <timeout>

The :MTESt:STIMe command sets the timeout value for the Autoalign feature. If the
oscilloscope is unable to align the mask to your waveform within the specified timeout
value, it will stop trying to align and will report an alignment failure.

<timeout> An integer from 1 to 120 seconds representing the time between triggers (not the time
that it takes to finish the alignment.)

Example This example sets the timeout value for the Autoalign feature to 10 seconds.
10 OUTPUT 707;"MTEST:STIMe 10"
20 END

Query :MTESt:STIMe?

The query returns timeout value for the Autoalign feature.

Returned Format [:MTESt:STIMe] <timeout><NL>

Example This example gets the timeout setting and prints the result on the computer display.
10 OUTPUT 707;"MTEST:STIME?"
30 ENTER 707;Value
40 PRINT Value
50 END

22-48

TITLe?

Query :MTESt:TITLe?

The :MTESt:TITLe? query returns the mask title which is a string of up to 23
characters. The title is displayed in the mask test dialog box and mask test tab when
a mask file is loaded.

Returned Format [:MTESt:TITLe] <mask_title><NL>

<mask_title> A string of up to 23 ASCII characters which is the mask title.

Example This example places the mask title in the string variable and prints the contents to the
computer’s screen.
10 DIM Title$[24]
20 OUTPUT 707;":MTEST:TITLE?"
30 ENTER 707;Title$
40 PRINT Title$
50 END

22-49

Mask Test Commands
TRIGger:SOURce

TRIGger:SOURce

Command :MTESt:TRIGger:SOURce CHANnel<N>

The :MTESt:TRIGger:SOURce command sets the channel or function to use as the
trigger. Mask testing must be enabled before using this command.

<N> An integer, 1 - 4.

Example This example sets the mask trigger source to channel 1.
10 OUTPUT 707;"MTEST:TRIGGER:SOURCE CHANNEL1"
20 END

Query :MTESt:TRIGger:SOURce?

The query returns the currently selected mask test trigger source.

Returned Format [:MTESt:TRIGger] CHANnel<N><NL>

Example This example gets the trigger source setting and prints the result on the computer
display.
10 DIM Amask_source$[30]
20 OUTPUT 707;"MTEST:TRIGGER:SOURCE?"
30 ENTER 707;Amask_source$
40 PRINT Amask_source$
50 END

22-50

Mask Test Commands
TRIGger:SOURce

23

Measure Commands

23-2

Measure Commands

The commands in the MEASure subsystem are used to make parametric
measurements on displayed waveforms. These MEASure commands and
queries are implemented in the Infiniium Oscilloscopes.

• AREA
• BWIDth
• CDRRATE
• CGRade:CROSsing
• CGRade:DCDistortion
• CGRade:EHEight
• CGRade:EWIDth
• CGRade:JITTer
• CGRade:QFACtor
• CLEar | SCRatch
• CROSing
• DELTatime
• DUTYcycle
• FALLtime
• FFT:DFRequency (delta frequency)
• FFT:DMAGnitude (delta magnitude)
• FFT:FREQuency
• FFT:MAGNitude
• FFT:PEAK1
• FFT:PEAK2
• FFT:THReshold
• FREQuency
• HISTogram:HITS
• HISTogram:M1S
• HISTogram:M2S
• HISTogram:M3S
• HISTogram:MAX

23-3

• HISTogram:MEAN
• HISTogram:MEDian
• HISTogram:MIN
• HISTogram:PEAK
• HISTogram:PP
• HISTogram:STDDev
• NAME
• NPULses
• NWIDth
• OVERshoot
• PERiod
• PHASe
• PPULses
• PREShoot
• PWIDth
• QUALifier<M>
• RESults?
• RISetime
• SCRatch | CLEar
• SENDvalid
• SETuptime
• SLEWrate
• SOURce
• STATistics
• TEDGe
• TMAX
• TMIN
• TVOL
• VAMPlitude
• VAVerage
• VBASe
• VLOWer
• VMAX
• VMIDdle
• VMIN
• VPP
• VRMS

23-4

• VTIMe
• VTOP
• VUPPer
• WINdow

E2688A High Speed Serial Software commands
The following MEASure commands are available when the E2688A High
Speed Serial Software is installed.

• CLOCk
• CLOCk:METHod
• CLOCk:METHod:DEEMphasis
• CLOCk:VERTical:OFFset
• CLOCk:VERTical:RANGe
• TIEData
• TIEFilter:STARt
• TIEFilter:STATe
• TIEFilter:STOP
• TIEFilter:TYPE
• Also see the MTESt:FOLDing command in the mask test subsystem.

E2681A EZJIT Jitter Analysis Software commands
The following MEASure commands are available when the E2681A EZJIT
Jitter Analysis Software is installed.

• CTCDutycycle
• CTCJitter
• CTCNwidth
• CTCPwidth
• DATarate
• HOLDtime
• JITTer:HISTogram
• JITTer:MEASurement
• JITTer:SPECtrum
• JITTer:STATistics
• JITTer:TRENd
• NCJitter
• NPERiod
• NUI
• SETuptime

23-5

• TIEClock2
• TIEData
• UITouijitter
• UNITinterval
• DUTYcycle, FREQuency, PERiod, and PHASe have an additional

<direction> parameter.

23-6

N5400A and N5401A Jitter Analysis Software commands
The following MEASure commands are available when the N5400A or
N5401A Jitter Analysis Software is installed.

• CLOCk
• CLOCk:METHod
• CTCDutycycle
• CTCJitter
• CTCNwidth
• CTCPwidth
• DATarate
• HOLDtime
• JITTer:HISTogram
• JITTer:MEASurement
• JITTer:SPECtrum
• JITTer:STATistics
• JITTer:TRENd
• NCJitter
• :RJDJ:ALL?
• :RJDJ:BER
• :RJDJ:EDGE
• :RJDJ:INTerpolate
• :RJDJ:PLENgth
• :RJDJ:SOURce
• :RJDJ:STATe
• :RJDJ:TJRJDJ?
• :RJDJ:UNITs
• SETuptime
• TIEClock2
• TIEData
• UNITinterval
• DUTYcycle, FREQuency, PERiod, and PHASe have an additional

<direction> parameter.

23-7

FFT Commands
The :MEASure:FFT commands control the FFT measurements that are accessible
through the Measure subsystem.

Measurement Setup
To make a measurement, the portion of the waveform required for that
measurement must be displayed on the oscilloscope.

• For a period or frequency measurement, at least one and a half complete
cycles must be displayed.

• For a pulse width measurement, the entire pulse must be displayed.
• For a rise time measurement, the leading (positive-going) edge of the

waveform must be displayed.
• For a fall time measurement, the trailing (negative-going) edge of the

waveform must be displayed.
In jitter mode with jitter statistics enabled, measurements are made on all data
regardless of what is on screen.

User-Defined Thresholds
If you choose to set user-defined thresholds, they must be set before actually
sending the measurement command or query.

Measurement Error
If a measurement cannot be made because of a lack of data, because the source
waveform is not displayed, the requested measurement is not possible (for
example, a period measurement on an FFT waveform), or for some other
reason, the following results are returned:

• 9.99999E+37 is returned as the measurement result.
• If SENDvalid is ON, the error code is also returned as well as the

questionable value.

Making Measurements
If more than one period, edge, or pulse is displayed, time measurements are
made on the first, left-most portion of the displayed waveform.

When any of the defined measurements are requested, the oscilloscope first
determines the top (100%) and base (0%) voltages of the waveform. From
this information, the oscilloscope determines the other important voltage
values (10%, 90%, and 50% voltage values) for making measurements.

The 10% and 90% voltage values are used in the rise time and fall time
measurements when standard thresholds are selected. The 50% voltage value
is used for measuring frequency, period, pulse width, and duty cycle with
standard thresholds selected.

23-8

Measure Commands

You can also make measurements using user-defined thresholds instead of the
standard thresholds.

When the command form of a measurement is used, the oscilloscope is placed
in the continuous measurement mode. The measurement result will be
displayed on the front panel. There may be a maximum of 5 measurements
running continuously. Use the SCRatch command to turn off the
measurements.

When the query form of the measurement is used, the measurement is made
one time, and the measurement result is returned.

• If the current acquisition is complete, the current acquisition is measured
and the result is returned.

• If the current acquisition is incomplete and the oscilloscope is running,
acquisitions will continue to occur until the acquisition is complete. The
acquisition will then be measured and the result returned.

• If the current acquisition is incomplete and the oscilloscope is stopped, the
measurement result will be 9.99999e+37 and the incomplete result state
will be returned if SENDvalid is ON.

All measurements are made using the entire display, except for VAVerage
and VRMS which allow measurements on a single cycle. Therefore, if you
want to make measurements on a particular cycle, display only that cycle on
the screen.

Measurements are made on the displayed waveforms specified by the
SOURce command. The SOURce command lets you specify two sources.
Most measurements are only made on a single source. Some measurements,
such as the DELTatime measurement, require two sources.

If the waveform is clipped, the measurement result may be questionable. In
this case, the value returned is the most accurate value that can be made using
the current scaling. You might be able to obtain a more accurate measurement
by adjusting the vertical scale to prevent the waveform from being clipped.

23-9

Measure Commands
AREA

AREA

Command :MEASure:AREA {CYCLe | DISPlay}[,<source>]

The :MEASure:AREA command turns on the area measurement. The area
measurement measures between the waveform, or a selected cycle of the waveform,
and the waveform ground. When measuring Area, it is sometimes useful to use the
Subtract Math Operator to remove any dc offset from a waveform you want to
measure. Also see Math/FFT Functions for more details.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

Example This example turns on the area measurement which measures between the waveform
and ground. Only that portion of the waveform which is in the waveform viewing
area is measured.
10 OUTPUT 707;"MEASURE:AREA DISPLAY"
20 END

Query :MEASure:AREA?

The :MEASure:AREA? query returns the area measurement.

Returned Format [:MEASure:AREA]<value>[,<result_state>]<NL>

Example This example places the current selection for the area to be measured in the string
variable, Selection$, then prints the contents of the variable to the computer’s screen.
10 DIM Selection$[50]
20 OUTPUT 707;"MEASure:AREA?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

23-10

Measure Commands
BWIDth

BWIDth

Command :MEASure:BWIDth <source>,<idle_time>

The :MEASure:BWIDth command measures the width of bursts in your waveform.
The idle time is the minimum time between bursts.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N> | CLOCk | MSPectrum | MTRend
| EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> is an integer, 1 - 4.

<idle_time> Amount of idle time between bursts.

Example This example measures the width of bursts for the waveform on channel one and sets
the idle time to 1 microsecond.
10 OUTPUT 707;"MEASURE:BWIDTH CHANNEL1,1E-6"
20 END

Query :MEASure:BWIDth? <source>,<idle_time>

The :MEASure:BWIDth? query returns the width of the burst being measured.

Returned Format [:MEASure:BWIDth]<burst_width><NL>

Example This example returns the width of the burst being measured, in the string variable,
Burstwidth$, then prints the contents of the variable to the computer’s screen.
10 DIM Burstwidth$[50]
20 OUTPUT 707;"MEASure:BWIDTH? CHANNEL1,1E-6"
30 ENTER 707;Burstwidth$
40 PRINT Burstwidth$
50 END

23-11

Measure Commands
CDRRATE

CDRRATE

Command :MEASure:CDRRATE <source>

The :MEASure:CDRRATE command determines the data rate (clock recovery rate)
from the clock recovery method being used. It yields one data point per acquisition
so trending cannot be performed on this measurement.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M>| WMEMory<N> | CLOCk |
MSPectrum | MTRend | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1- 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1- 4, representing the selected function or waveform memory

<M> An integer, 0- 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

Example This example measures the clock recovery rate of channel 1.
10 OUTPUT 707;"MEASURE:CDRRATE CHANNEL1"
20 END

23-12

Measure Commands
CDRRATE

Example This example places the current data rate of the channel 1 waveform in the numeric
variable, Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:CDRRATE? CHANNEL1”
30 ENTER 707;Value
40 PRINT Value
50 END

23-13

Measure Commands
CGRade:CROSsing

CGRade:CROSsing

Command :MEASure:CGRade:CROSsing

The :MEASure:CGRade:CROSsing command enables the crossing level percent
measurement on the current eye pattern. Before using this command or query, you
must use the :DISPlay:CGRade command to enable the color grade persistence
feature. Also, there must be a full eye diagram on screen before a valid measurement
can be made.

Example This example measures the crossing level.
10 OUTPUT 707;"MEASURE:CGRADE:CROSSING"
20 END

Query :MEASure:CGRade:CROSsing?

The :MEASure:CGRade:CROSsing? query returns the crossing level percent
measurement of the current eye diagram on the color grade display. Before using this
command or query, you must use the :DISPlay:CGRade command to enable the color
grade persistence feature.

Returned Format [:MEASure:CGRade:CROSsing]<value>[,<result_state>]<NL>

<value> The crossing level.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result. Refer
to the MEASure:RESults command, for a list of the result states.

Example This example places the current crossing level in the numeric variable, Value, then
prints the contents of the variable to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:CGRADE:CROSSING?"
30 ENTER 707;Value
40 PRINT Value
50 END

23-14

Measure Commands
CGRade:DCDistortion

CGRade:DCDistortion

Command :MEASure:CGRade:DCDistortion <format>

The :MEASure:CGRade:DCDistortion command enables the duty cycle distortion
measurement on the current eye pattern. The parameter specifies the format for
reporting the measurement. Before using this command or query, you must use the
:DISPlay:CGRade command to enable the color grade persistence feature. Also, there
must be a full eye diagram on screen before a valid measurement can be made.

<format> {TIME | PERCent}

Example This example measures the duty cycle distortion.
10 OUTPUT 707;"MEASURE:CGRADE:DCDISTORTION TIME"
20 END

Query :MEASure:CGRade:DCDistortion? <format>

The :MEASure:CGRade:DCDistortion query returns the duty cycle distortion
measurement of the color grade display. Before using this command or query, you
must use the :DISPlay:CGRade command to enable the color grade persistence
feature.

Returned Format [:MEASure:CGRade:DCDistortion]<value>[,<result_state>]<NL>

<value> The duty cycle distortion.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result. Refer
to the MEASure:RESults command, for a list of the result states.

Example This example places the current duty cycle distortion in the numeric variable, Value,
then prints the contents of the variable to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:CGRADE:DCDISTORTION? PERCENT"
30 ENTER 707;Value
40 PRINT Value
50 END

23-15

Measure Commands
CGRade:EHEight

CGRade:EHEight

Command :MEASure:CGRade:EHEight <algorithm>

The :MEASure:CGRade:EHEight command enables the eye height measurement on
the current eye pattern. Before using this command or query, you must use the
:DISPlay:CGRade command to enable the color grade persistence feature. Also, there
must be a full eye diagram on screen before a valid measurement can be made.

<algorithm> {MEASured | EXTRapolated} EXTRapolated is optional because it is the default if
you do not specify an algorithm.
MEASured will measure the eye height within the window (see CGRade:EWINdow)
of the current data. The smallest eye height is reported. Extrapolated will estimate the
eye height based upon the mean and standard deviation of the eye top and base.

Example This example enables the eye height measurement.
10 OUTPUT 707;"MEASURE:CGRADE:EHEIGHT"
20 END

Query :MEASure:CGRade:EHEight?

The :MEASure:CGRade:EHEight? query returns the eye height measurement of the
color grade display. Before using this command or query, you must use the
:DISPlay:CGRade command to enable the color grade persistence feature.

Returned Format [:MEASure:CGRade:EHEight]<value>[,<result_state>]<NL>

<value> The eye height.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result. Refer
to the MEASure:RESults command, for a list of the result states.

Example This example places the current eye height in the numeric variable, Value, then prints
the contents of the variable to the computer’s screen.

23-16

Measure Commands
CGRade:EHEight

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:CGRADE:EHEIGHT?"
30 ENTER 707;Value
40 PRINT Value
50 END

23-17

Measure Commands
CGRade:EWIDth

CGRade:EWIDth

Command :MEASure:CGRade:EWIDth <algorithm>

The :MEASure:CGRade:EWIDth command enables the eye width measurement on
the current eye pattern. Before using this command or query, you must use the
:DISPlay:CGRade command to enable the color grade persistence feature. Also, there
must be a full eye diagram on screen before a valid measurement can be made.

<algorithm> {MEASured | EXTRapolated} EXTRapolated is optional because it is the default if
you do not specify an algorithm.
MEASured will measure the eye width within the window (see CGRade:EWINdow)
of the current data. The smallest eye width is reported. Extrapolated will estimate the
eye width based upon the mean and standard deviation of the crossings.

Example This example measures the eye width.
10 OUTPUT 707;"MEASURE:CGRADE:EWIDTH"
20 END

Query :MEASure:CGRade:EWIDth?

The :MEASure:CGRade:EWIDth? query returns the eye width measurement of the
color grade display. Before using this command or query, you must use the
:DISPlay:CGRade command to enable the color grade persistence feature.

Returned Format [:MEASure:CGRade:EWIDth]<value>[,<result_state>]<NL>

<value> The eye width.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result. Refer
to the MEASure:RESults command, for a list of the result states.

Example This example places the current eye width in the numeric variable, Value, then prints
the contents of the variable to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:CGRADE:EWIDTH?"
30 ENTER 707;Value
40 PRINT Value
50 END

23-18

Measure Commands
CGRade:EWIDth

23-19

Measure Commands
CGRade:EWINdow

CGRade:EWINdow

Command :MEASure:CGRade:EWINdow,<start>,<stop>
[,<start_after>]

The :MEASure:CGRade:EWINdow command is used to change the starting point
and the stopping point of the window used to make the eye pattern measurements of
eye height, eye crossing %, and eye q-factor. In addition, the number of waveform
hits can be set to ensure that enough data has been collected to make accurate
measurements.

<start> An integer from 1 to 100 for horizontal starting point. (Default value is 40%.)

<stop> An integer from 1 to 100 for horizontal stopping point. (Default value is 60%.)

<start_after> An integer from 1 to 63,488 for number of hits to acquire before making
measurements. (Default value is 1.)

Example This example sets the eye window starting point to 2%, the stopping point to 75%
and the start after to 5,000 hits.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:CGRADE:EWINDOW 2,75,5000"
30 END

23-20

Measure Commands
CGRade:EWINdow

Query :MEASure:CGRade:EWINdow?

The :MEASure:CGRade:EWINdow query returns the starting point, the ending point,
and the start after setting for the eye pattern measurements.

Returned Format [:MEASure:CGRade:EWIDdow] <start>,<stop>,<start_after> <NL>

The following example returns the values for the eye window.

Example 10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:CGRADE:EWINDOW?"
30 ENTER 707;Start,Stop,Startafter
40 PRINT Start,Stop,Startafter
50 END

Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers.
Otherwise, the headers may cause misinterpretation of returned data.

23-21

Measure Commands
CGRade:JITTer

CGRade:JITTer

Command :MEASure:CGRade:JITTer <format>

The :MEASure:CGRade:JITTer measures the jitter at the eye diagram crossing point.
The parameter specifies the format, peak-to-peak or RMS, of the returned results.
Before using this command or query, you must use the :DISPlay:CGRade command
to enable the color grade persistence feature.

<format> {PP | RMS}

Example This example measures the jitter.
10 OUTPUT 707;"MEASURE:CGRADE:JITTER RMS"
20 END

Query :MEASure:CGRade:JITTer? <format>

The :MEASure:CGRade:JITTer? query returns the jitter measurement of the color
grade display. Before using this command or query, you must use the
:DISPlay:CGRade command to enable the color grade persistence feature.

Returned Format [:MEASure:CGRade:JITTer]<value>[,<result_state>]<NL>

<value> The jitter.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result. Refer
to the MEASure:RESults command, for a list of the result states.

Example This example places the current jitter in the numeric variable, Value, then prints the
contents of the variable to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:CGRADE:JITTER? RMS"
30 ENTER 707;Value
40 PRINT Value
50 END

23-22

Measure Commands
CGRade:QFACtor

CGRade:QFACtor

Command :MEASure:CGRade:QFACtor

The :MEASure:CGRade:QFACtor command measures the Q factor. Before using
this command or query, you must use the :DISPlay:CGRade command to enable the
color grade persistence feature. Also, there must be a full eye diagram on screen
before a valid measurement can be made.

Example This example measures the Q factor.
10 OUTPUT 707;"MEASURE:CGRADe:QFACTOR"
20 END

Query :MEASure:CGRade:QFACtor?

The :MEASure:CGRade:QFACtor? query returns the Q factor measurement of the
color grade display. Before using this command or query, you must use the
:DISPlay:CGRade command to enable the color grade persistence feature.

Returned Format [:MEASure:CGRade:QFACtor]<value>[,<result_state>]<NL>

<value> The Q factor.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result. Refer
to the MEASure:RESults command, for a list of the result states.

Example This example places the Q factor in the numeric variable, Value, then prints the
contents of the variable to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:CGRADE:QFACTOR"
30 ENTER 707;Value
40 PRINT Value
50 END

23-23

Measure Commands
CLEar

CLEar

Command :MEASure:{CLEar | SCRatch}

The :MEASure:CLEar command clears the measurement results from the screen and
disables all previously enabled measurements.

Example This example clears the current measurement results from the screen.
10 OUTPUT 707;":MEASURE:CLEAR"
20 END

23-24

Measure Commands
CLOCk

CLOCk

Command :MEASure:CLOCk {{{ON|1},CHANnel<N>} | {OFF|0}}

The :MEASure:CLOCk command turns the recovered clock display on or off and sets
the clock recovery channel source.

<N> An integer, 1 - 4.

Example This example turns the recovered clock display on for channel 1.
10 OUTPUT 707;":MEASURE:CLOCK ON,CHANNEL1"
20 END

Query :MEASure:CLOCk?

The :MEASure :CLOCk? query returns the state of the recovered clock display.

Returned format [:MEASure:CLOCk] {1 | 0}<NL>

Example This example places the current setting of the recovered clock display in the variable
Setting, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:CLOCK?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

This command is only available when the E2688A High Speed Serial Software.

23-25

Measure Commands
CLOCk:METHod

CLOCk:METHod

Command :MEASure:CLOCk:METHod
{FOPLL,<data_rate>,<loop_bandwidth>} |
{EQFOPLL,<data_rate>,<loop_bandwidth>}

{SOPLL,<data_rate>,<loop_bandwidth>,
<damping_factor>} |

{EQSOPLL,<data_rate>,<loop_bandwidth>,
<damping_factor>}

{PCIE,{DEEMphasis | TRANsition | BOTH}} |

{FC,{FC1063 | FC2125 | FC425}} |

{EXPFOPLL,<source>,{RISing | FALLing | BOTH},
<multiplier>,<clock_freq>,<loop_bandwidth>} |

{EXPSOPLL,<source>,{RISing | FALLing | BOTH},
<multiplier>,<clock_freq>,<loop_bandwidth>,
<damping_fact>} |

{EXPlicit,<source>,{RISing | FALLing | BOTH}
[,<multiplier>]} |

{FIXed,{AUTO | {SEMI[,<data_rate>]} | <data_rate>}}

{FLEXR,<baud_rate>} | {FLEXT,<baud_rate>}

The :MEASure:CLOCk:METHod command sets the clock recovery method to
FOPLL (first order phase-locked loop), SOPLL (second order phase-locked loop),
EQFOPLL (equalized first order phase-locked loop), EQSOPLL (equalized second
order phase-locked loop), PCIE (PCI Express), FC (Fibre Channel), EXPFOPLL
(Explicit First Order PLL), EXPSOPLL (Explicit Second Order PLL), EXPlicit
(Explicit Clock), FIXed (Constant Frequency), FLEXR (FlexRay Receiver), or
FLEXT (FlexRay Transmitter).
The EQUalized clock recovery methods are only available if the oscilloscope has the
High Speed Serial option and the Serial Data Equalization option installed and the
features are enabled.

This command is only available when the E2688A High Speed Serial Software
or the N5400A/N5401A Software is installed.

23-26

Measure Commands
CLOCk:METHod

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<data_rate> A real number for the base data rate in Hertz.

<damping_
factor>

A real number for the damping factor of the PLL in bits per second.

<loop_
bandwidth>

A real number for the cutoff frequency for the PLL to track.

<multiplier> An integer used as the multiplication factor.

<clock_freq> A real number used for the clock frequency of the PLL.

<track_freq> A real number used for the tracking frequency of the PLL.

<damping_fact> A real number used for the damping factor of the PLL.

<baud_rate> A real number used for the baud rate.

Example This example sets the clock recovery method to phase-locked loop.
10 OUTPUT 707;":MEASURE:CLOCK:METHOD FOPLL,2E9,1.19E6"
20 END

Query :MEASure:CLOCk:METHod?

The :MEASure :CLOCk:METHod? query returns the state of the clock recovery
method.

Returned format [:MEASure:CLOCk:METHod]
{FOPLL,<data_rate>,<loop_bandwidth>} |
{EQFOPLL,<data_rate>,<loop_bandwidth>}
{SOPLL,<data_rate>,<loop_bandwidth>,<damping_factor>} |
{EQSOPLL,<data_rate>,<loop_bandwidth>,<damping_factor>}
{PCIE,{DEEMphasis | TRANsition | BOTH}} |
{FC,{FC1063 | FC2125 | FC425}} |
{EXPFOPLL <source>,{RISing | FALLing | BOTH},
<multiplier>,<clock_freq>,<track_freq>} |
{EXPSOPLL <source>,{RISing | FALLing | BOTH},
<multiplier>,<clock_freq>,<track_freq>,<damping_fact>} |
{EXPlict,<source>,{RISing | FALLing | BOTH},<multiplier>} |
{FIXed,{AUTO | {SEMI,<data_rate>} | <data_rate>}}

23-27

Measure Commands
CLOCk:METHod

{FLEXR,<baud_rate>} | {FLEXT,<baud_rate>}

Example This example places the current setting of the clock recovery method in the variable
Setting, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:CLOCK:METHOD?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

23-28

Measure Commands
CLOCk:METHod:DEEMphasis

CLOCk:METHod:DEEMphasis

Command :MEASure:CLOCk:METHod:DEEMphasis {OFF | ON}

The :MEASure:CLOCk:METHod:DEEMphasis command turns de-emphasis on or
off. See the help system for more information on de-emphasis.

Example This example enables de-emphasis.
10 OUTPUT 707;":MEASURE:CLOCk:METHod:DEEMphasis ON"
20 END

Query :MEASure:CLOCk:METHod:DEEMphasis?

The :MEASure:CLOCk:METHod:DEEMphasis? query returns whether or not
de-emphasis is turned on.

Returned format [:MEASure:CLOCk:METHod:DEEMphasis] {OFF | ON}

Example This example places the current setting of the de-emphasis mode in the string variable
deemph, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:CLOCK:METHod:DEEMphasis?"
30 ENTER 707;deemph
40 PRINT deemph
50 END

This command is only available when the E2688A High Speed Serial Software
is installed.

23-29

Measure Commands
CLOCk:VERTical

CLOCk:VERTical

Command :MEASure:CLOCk:VERTical {AUTO | MANual}

The :MEASure:CLOCk:VERTIcal command sets the recovered clock vertical scale
mode to automatic or manual. In automatic mode, the oscilloscope automatically
selects the vertical scaling and offset. In manual mode, you can set your own scaling
and offset values.

Example This example sets the recovered clock vertical scale mode to automatic.
10 OUTPUT 707;":MEASURE:CLOCk:VERTical AUTO"
20 END

Query :MEASure:CLOCk:VERTical?

The :MEASure:CLOCk:VERTical? query returns the current recovered clock vertical
scale mode setting.

Returned format [:MEASure:CLOCk:VERTical] {AUTO | MANual}

Example This example places the current setting of the recovered clock vertical scale mode in
the string variable Setting$, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:CLOCK:VERTICAL?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

This command is only available when the E2688A High Speed Serial Software
is installed.

23-30

Measure Commands
CLOCk:VERTical:OFFSet

CLOCk:VERTical:OFFSet

Command :MEASure:CLOCk:VERTical:OFFSet <offset>

The :MEASure:CLOCk:VERTial:OFFSet command sets the recovered clock vertical
offset.

<offset> A real number for the recovered clock vertical offset.

Example This example sets the clock recovery vertical offset to 1 volt.
10 OUTPUT 707;":MEASURE:CLOCK:VERTICAL:OFFSET 1"
20 END

Query :MEASure:CLOCk:VERTical:OFFSet?

The :MEASure:CLOCk:VERTIcal:OFFSet? query returns the clock recovery vertical
offset setting.

Returned format [:MEASure:CLOCk:VERTical:OFFSet] <value><NL>

<value> The clock recovery vertical offset setting.

Example This example places the current value of recovered clock vertical offset in the numeric
variable, Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:CLOCK:VERTICAL:OFFSET?"
30 ENTER 707;Value
40 PRINT Value
50 END

This command is only available when the E2688A High Speed Serial Software
is installed.

23-31

Measure Commands
CLOCk:VERTical:RANGe

CLOCk:VERTical:RANGe

Command :MEASure:CLOCk:VERTical:RANGe <range>

The :MEASure:CLOCk:VERTial:RANGe command sets the recovered clock vertical
range.

<range> A real number for the full-scale recovered clock vertical range.

Example This example sets the recovered clock vertical range to 16 volts (2 volts times 8
divisions.)
10 OUTPUT 707;":MEASURE:CLOCK:VERTICAL:RANGE 16"
20 END

Query :MEASure:CLOCk:VERTical:RANGe?

The :MEASure:CLOCk:VERTical:RANGe? query returns the recovered clock
vertical range setting.

Returned Format [:MEASure:CLOCk:VERTical:RANGe] <value><NL>

<value> The recovered clock vertical range setting.

Example This example places the current value of recovered clock vertical range in the numeric
variable, Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:CLOCK:VERTICAL:RANGE?"
30 ENTER 707;Value
40 PRINT Value
50 END

This command is only available when the E2688A High Speed Serial Software
is installed.

23-32

Measure Commands
CROSsing

CROSsing

Command :MEASure:CROSsing <source1>, <source2>, <hysteresis>

The :MEASure:CROSsing command measures the voltage where two signals cross
(uses edges closest to the center of the screen)

<source1> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<source2> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

<hysteresis> a real number

Example This example measures the voltage where channel 1 and 2 cross (hysteresis set to 50
mV).
10 OUTPUT 707;"MEASURE:CROSsing CHAN1, CHAN2, 50e-3"
20 END

Query :MEASure:CROSsing?

The :MEASure:CROSsing? query returns the crossing measurement.

Returned Format [:MEASure:CROSsing]<value><NL>

23-33

Measure Commands
CTCDutycycle

CTCDutycycle

Command :MEASure:CTCDutycycle <source>,<direction>

The :MEASure:CYCDutycycle command measures the cycle-to-cycle duty cycle
jitter (%) of the waveform.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

<direction> {RISing | FALLing}
Specifies direction of waveform edge to make measurement.

Example This example measures the cycle-to-cycle duty cycle on the rising edge of channel 1.
10 OUTPUT 707;"MEASURE:CTCDUTYCYCLE CHANNEL1,RISING"
20 END

This command is only available when the E2681A Jitter Analysis Software or
the N5400A/N5401A Software is installed.

23-34

Measure Commands
CTCDutycycle

Query :MEASure:CTCDutycycle? <source>,<direction>

The :MEASure:CTCDutycycle? query returns the cycle-to-cycle duty cycle jitter (%)
measurement.

Returned Format [:MEASure:CTCDutycycle <value>[,<result_state>]<NL>

<value> The cycle-to-cycle duty cycle jitter (%) of the waveform.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result. Refer
to the MEASure:RESults command, for a list of the result states.

Example This example places the cycle-to-cycle duty cycle of channel 1 in the numeric variable,
Value, then prints the contents of the variable to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:CTCDUTYCYCLE CHANNEL1,RISING"
30 ENTER 707;Value
40 PRINT Value
50 END

23-35

Measure Commands
CTCJitter

CTCJitter

Command :MEASure:CTCJitter <source>,<direction>

The :MEASure:CYCJitter command measures the cycle-to-cycle jitter of the
waveform.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

<direction> {RISing | FALLing}
Specifies direction of waveform edge to make measurement.

Example This example measures the cycle-to-cycle jitter on the rising edge of channel 1.
10 OUTPUT 707;"MEASURE:CTCJITTER CHANNEL1,RISING"
20 END

This command is only available when the E2681A Jitter Analysis Software or
the N5400A/N5401A Software is installed.

23-36

Measure Commands
CTCJitter

Query :MEASure:CTCJitter? <source>,<direction>

The :MEASure:CTCJitter? query returns the cycle-to-cycle jitter time measurement.

Returned Format [:MEASure:CTCJitter <value>[,<result_state>]<NL>

<value> The cycle-to-cycle jitter time of the waveform.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result. Refer
to the MEASure:RESults command, for a list of the result states.

Example This example places the cycle-to-cycle jitter of channel 1 in the numeric variable,
Value, then prints the contents of the variable to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:CTCJITTER CHANNEL1,RISING"
30 ENTER 707;Value
40 PRINT Value
50 END

23-37

Measure Commands
CTCNwidth

CTCNwidth

Command :MEASure:CTCNwidth [<source>]

The :MEASure:CTCNwidth command measures the cycle-to-cycle -width jitter of
the waveform.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

Example This example measures the cycle-to-cycle -width of channel 1.
10 OUTPUT 707;"MEASURE:CTCNWIDTH CHANNEL1"
20 END

Query :MEASure:CTCNwidth? [<source>]

The :MEASure:CTCNwidth? query returns the cycle-to-cycle -width jitter
measurement.

Returned Format [:MEASure:CTCNwidth <value>[,<result_state>]<NL>

<value> The cycle-to-cycle - width jitter of the waveform.

This command is only available when the E2681A Jitter Analysis Software or
the N5400A/N5401A Software is installed.

23-38

Measure Commands
CTCNwidth

<result_state> If SENDVALID is ON, the result state is returned with the measurement result. Refer
to the MEASure:RESults command, for a list of the result states.

Example This example places the cycle-to-cycle - width of channel 1 in the numeric variable,
Value, then prints the contents of the variable to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:CTCNWIDTH CHANNEL1"
30 ENTER 707;Value
40 PRINT Value
50 END

23-39

Measure Commands
CTCPwidth

CTCPwidth

Command :MEASure:CTCPwidth [<source>]

The :MEASure:CYCPwidth command measures the cycle-to-cycle + width jitter of
the waveform.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

Example This example measures the cycle-to-cycle - width of channel 1.
10 OUTPUT 707;"MEASURE:CTCPWIDTH CHANNEL1"
20 END

Query :MEASure:CTCPwidth? [<source>]

The :MEASure:CTCPwidth? query returns the cycle-to-cycle + width jitter
measurement.

Returned Format [:MEASure:CTCPwidth <value>[,<result_state>]<NL>

<value> The cycle-to-cycle + width jitter of the waveform.

This command is only available when the E2681A Jitter Analysis Software or
the N5400A/N5401A Software is installed.

23-40

Measure Commands
CTCPwidth

<result_state> If SENDVALID is ON, the result state is returned with the measurement result. Refer
to the MEASure:RESults command, for a list of the result states.

Example This example places the cycle-to-cycle + width of channel 1 in the numeric variable,
Value, then prints the contents of the variable to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:CTCPWIDTH CHANNEL1"
30 ENTER 707;Value
40 PRINT Value
50 END

23-41

Measure Commands
DATarate

DATarate

Command :MEASure:DATarate <source>[,{AUTO |
(SEMI,<data_rate>)}]

The :MEASure:DATarate command measures the data rate in bits per second for the
selected source. Use the :MEASure:UNITinterval command/query to measure the unit
interval of the source

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1- 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1- 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

<data_rate> A real number specifying the data rate.

Example This example measures the data rate of channel 1.
10 OUTPUT 707;"MEASURE:DATARATE CHANNEL1"
20 END

Query :MEASure:DATarate? <source>[,{Auto |
(SEMI,<data_rate>)}]

The :MEASure:DATarate? query returns the measured data rate.

This command is only available when the E2681A Jitter Analysis Software or
the N5400A/N5401A Software is installed.

23-42

Measure Commands
DATarate

Returned Format [:MEASure:DATarate] <value>[,<result_state>]<NL>

<value> Data rate frequency in bits per second for the selected source.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current data rate of the channel 1 waveform in the numeric
variable, Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:DATARATE? CHANNEL1”
30 ENTER 707;Value
40 PRINT Value
50 END

23-43

Measure Commands
DELTatime

DELTatime

Command :MEASure:DELTatime [<source>[,<source>]]

The :MEASure:DELTatime command measures the delta time between two edges. If
one source is specified, the delta time from the leading edge of the specified source
to the trailing edge of the specified source is measured. If two sources are specified,
the delta time from the leading edge on the first source to the trailing edge on the
second source is measured.
Sources are specified with the :MEASure:SOURce command or with the optional
parameter following the :MEASure:DELTatime command. The rest of the parameters
for this command are specified with the :MEASure:DEFine command.
The necessary waveform edges must be present on the display. The query will return
9.99999E+37 if the necessary edges are not displayed.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

Example This example measures the delta time between channel 1 and
channel 2.
10 OUTPUT 707;":MEASURE:DELTATIME CHANNEL1,CHANNEL2"
20 END

23-44

Measure Commands
DELTatime

Query :MEASure:DELTatime? [<source>[,<source>]]

The :MEASure:DELTatime? query returns the measured delta time value.

Returned Format [:MEASure:DELTatime] <value>[,<result_state>]<NL>

<value> Delta time from the first specified edge on one source to the next specified edge on
another source.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current value of delta time in the numeric variable, Value,
then prints the contents of the variable to the computer's screen. This example assumes
the source was set using :MEASure:SOURce.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:DELTATIME?"
30 ENTER 707;Value
40 PRINT Value
50 END

Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers.
Otherwise, the headers may cause misinterpretation of returned data.

23-45

Measure Commands
DELTatime:DEFine

DELTatime:DEFine

The MEASuure:DELTatime:DEFine command sets the type of direction, the number
of the edge, and the edge position for the delta time measurement.

Command :MEASure:DELTatime:DEFine <start_edge_direction>,
<start_edge_number>,<start_edge_position>,
<stop_edge_direction>,<stop_edge_number>,
<stop_edge_position>

<start_edge
_direction> {RISing | FALLing | EITHer} for start directions.

<start_edge
_number> An integer from 1 to 65534 for start edge numbers.

<start_edge
_position> {UPPer | MIDDle | LOWer} for start edge positions.

<stop_edge
_direction> {RISing | FALLing | EITHer} for stop directions.

<stop_edge
_number> An integer from 1 to 65534 for stop edge numbers.

<stop_edge
_position> {UPPer | MIDDle | LOWer} for stop edge positions.

Example This example sets the delta time starting edge to a rising edge on the 5th edge at the
middle position and the stoping edge to falling on the 50th edge at the lower position.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:DELTATIME:DEFINE
RISING,5,MIDDLE,FALLING,50,LOWER"
30 END

23-46

Measure Commands
DELTatime:DEFine

Query :MEASure:DELTatime:DEFine?

The :MEASure:DELTatime:DEFine? query returns the measured delta time value.

Returned Format [:MEASure:DELTatime:DEFine] <start_edge_direction>,
<start_edge_number>,<start_edge_position>,
<stop_edge_direction>,<stop_edge_number>,
<stop_edge_position><NL>

Example This example places the current value of delta time in the numeric variable, Value,
then prints the contents of the variable to the computer's screen. This example assumes
the source was set using :MEASure:SOURce.
5 DIM Startd$[50],Startp$[50],Stopd$[50],Stopp$[50] !Dimension
variables
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:DELTATIME:DEFINE?"
30 ENTER 707;Startd$,Start,Startp$,Stopd$,Stop,Stopp$
40 PRINT Startp$,Start,Startp$,Stopd$,Stop,Stopp$
50 END

Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers.
Otherwise, the headers may cause misinterpretation of returned data.

23-47

Measure Commands
DUTYcycle

DUTYcycle

Command :MEASure:DUTYcycle [<source>],<direction>

The :MEASure:DUTYcycle command measures the ratio (%) of the positive pulse
width to the period. Sources are specified with the :MEASure:SOURce command or
with the optional <source> parameter following the :MEASure:DUTYcycle
command.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

<direction> {RISing | FALLing}
Specifies direction of edge to start measurement.

Example This example measures the duty cycle of the channel 1 waveform.
10 OUTPUT 707;":MEASURE:DUTYCYCLE CHANNEL1"
20 END

The <direction> parameter is only available when the E2681A Jitter Analysis
Software or N5400A/N5t401A Software is installed. When <direction> is
specified, the <source> parameter is required.

23-48

Measure Commands
DUTYcycle

Query :MEASure:DUTYcycle? [<source>],<direction>

The :MEASure:DUTYcycle? query returns the measured duty cycle (%) of the
specified source.

Returned Format [:MEASure:DUTYcycle] <value>[,<result_state>]<NL>

<value> The ratio (%) of the positive pulse width to the period.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current duty cycle of the channel 1 waveform in the numeric
variable, Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:DUTYCYCLE? CHANNEL1”
30 ENTER 707;Value
40 PRINT Value
50 END

23-49

Measure Commands
FALLtime

FALLtime

Command :MEASure:FALLtime [<source>]

The :MEASure:FALLtime command measures the time at the upper threshold of the
falling edge, measures the time at the lower threshold of the falling edge, then
calculates the fall time. Sources are specified with the :MEASure:SOURce command
or with the optional parameter following the :MEASure:FALLtime command.
The first displayed falling edge is used for the fall-time measurement. To make this
measurement requires 4 or more sample points on the falling edge of the waveform.
Fall time = time at lower threshold point − time at upper threshold point.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

Example This example measures the fall time of the channel 1 waveform.
10 OUTPUT 707;":MEASURE:FALLTIME CHANNEL1"
20 END

23-50

Measure Commands
FALLtime

Query :MEASure:FALLtime? [<source>]

The :MEASure:FALLtime? query returns the fall time of the specified source.

Returned Format [:MEASure:FALLtime] <value>[,<result_state>]<NL>

<value> Time at lower threshold - time at upper threshold.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current value for fall time in the numeric variable, Value,
then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:FALLTIME? CHANNEL1"
30 ENTER 707;Value
40 PRINT Value
50 END

23-51

Measure Commands
FFT:DFRequency

FFT:DFRequency

Command :MEASure:FFT:DFRequency [<source>]

The :MEASure:FFT:DFRequency command enables the delta frequency
measurement. The source is specified with the :MEASure:SOURce command or with
the optional parameter following the :MEASure:FFT:DFR command.
The source must be a function that is set to FFTMagnitude, or a waveform memory
that contains an FFT for this command and query to work.

<source> {FUNCtion<N> | WMEMory<N> | CLOCk | MTRend | MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> For functions and waveform memories: 1, 2, 3, or 4.

Query :MEASure:FFT:DFRequency? [<source>]

The :MEASure:FFT:DFRequency? query returns the FFT delta frequency of the
specified peaks.

Returned Format [:MEASure:FFT:DFRequency]
<delta_frequency>[,<result_state>]<NL>

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Related Commands :MEASure:FFT:PEAK1, :MEASure:FFT:PEAK2, :MEASure:FFT:THReshold

Example This example measures the frequency difference between the peaks specified by the
:meas:fft:peak1 and :meas:fft:peak2 for channel 4.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":func4:fftm chan4"!Perform FFT on channel 4
30 OUTPUT 707;":func4:disp on"!Display the FFT
40 OUTPUT 707;":meas:FFT:thr-47"!Set peak threshold at-47 dBm
50 OUTPUT 707;":meas:FFT:Peak1 2"!Meas diff between peak 2 and 3
60 OUTPUT 707;":meas:FFT:Peak2 3"

23-52

Measure Commands
FFT:DFRequency

70 OUTPUT 707;":meas:FFT:dfr func4"!Perform dfrequency meas
80 OUTPUT 707;":meas:FFT:dfr? func4"!Query oscilloscope for
measurement
90 ENTER 707;Frequency
100 PRINT Frequency
110 END

23-53

Measure Commands
FFT:DMAGnitude

FFT:DMAGnitude

Command :MEASure:FFT:DMAGnitude [<source>]

The :MEASure:FFT:DMAGnitude command enables the delta magnitude
measurement. The source is specified with the :MEASure:SOURce command or with
the optional parameter following the :MEASure:FFT command.
The source must be a function that is set to FFT, or a waveform memory that contains
an FFT for this command and query to work.

<source> {FUNCtion<N> | WMEMory<N> | CLOCk | MTRend | MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> For functions and waveform memories: 1, 2, 3, or 4.

Query :MEASure:FFT:DMAGnitude? [<source>]

The :MEASure:FFT:DMAGnitude? query returns the delta magnitude of the specified
peaks.

Returned Format [:MEASure:FFT:DMAGnitude]
<delta_magnitude>[,<result_state>]<NL>

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Related Commands :MEASure:FFT:PEAK1, :MEASure:FFT:PEAK2, :MEASure:FFT:THReshold

Example This example measures the magnitude difference between the peaks specified by the
:meas:fft:peak1 and :meas:fft:peak2 for channel 4.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":func4:fftm chan4"!Perform FFT on channel 4
30 OUTPUT 707;":func4:disp on"!Display the FFT
40 OUTPUT 707;":meas:FFT:thr-47"!Set peak threshold at-47 dBm
50 OUTPUT 707;":meas:FFT:Peak1 2"!Meas diff between peak 2 and 3
60 OUTPUT 707;":meas:FFT:Peak2 3"

23-54

Measure Commands
FFT:DMAGnitude

70 OUTPUT 707;":meas:FFT:dmag func4"!Perform dfrequency meas
80 OUTPUT 707;":meas:FFT:dmag? func4"!Query oscilloscope for
measurement
90 ENTER 707;Magnitude
100 PRINT Magnitude
110 END

23-55

Measure Commands
FFT:FREQuency

FFT:FREQuency

Command :MEASure:FFT:FREQuency [<source>]

The :MEASure:FFT:FREQuency command enables the frequency measurement. The
source is specified with the :MEASure:SOURce command or with the optional
parameter following the :MEASure:FFT command.
The source must be a function that is set to FFT, or a waveform memory that contains
an FFT for this command and query to work.

<source> {FUNCtion<N> | WMEMory<N> | CLOCk | MTRend | MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> For functions and waveform memories: 1, 2, 3, or 4.

Query :MEASure:FFT:FREQuency? [<source>]

The :MEASure:FFT:FREQuency? query returns the frequency measurement.

Returned Format [:MEASure:FFT:FREQuency] <frequency>[,<result_state>]<NL>

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example measures the frequency the peak specified by the :meas:fft:peak1 for
channel 4.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":func4:fftm chan4"!Perform FFT on channel 4
30 OUTPUT 707;":func4:disp on"!Display the FFT
40 OUTPUT 707;":meas:FFT:thr-47"!Set peak threshold at-47 dBm
50 OUTPUT 707;":meas:FFT:Peak1 2"!Meas amplitude of peak 2
60 OUTPUT 707;":meas:FFT:freq func4"!Perform frequency meas
70 OUTPUT 707;":meas:FFT:freq? func4"!Query oscilloscope for
measurement
80 ENTER 707;Frequency
90 PRINT Frequency

23-56

Measure Commands
FFT:FREQuency

100 END

23-57

Measure Commands
FFT:MAGNitude

FFT:MAGNitude

Command :MEASure:FFT:MAGNitude [<source>]

The :MEASure:FFT:MAGNitude command measures the magnitude of the FFT. The
source is specified with the :MEASure:SOURce command or with the optional
parameter following the :MEASure:FFT command.
The source must be a function that is set to FFT, or a waveform memory that contains
an FFT for this command and query to work.

<source> {FUNCtion<N> | WMEMory<N> | CLOCk | MTRend | MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> For functions and waveform memories: 1, 2, 3, or 4.

Query :MEASure:FFT:MAGNitude?

The :MEASure:FFT:MAGNitude? query returns the magnitude value of the FFT.

Returned Format [:MEASure:FFT:FMAGNitude] <magnitude>[,<result_state>]<NL>

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example measures the magnitude of the peak specified by the :meas:fft:peak for
channel 4.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":func4:fftm chan4"!Perform FFT on channel 4
30 OUTPUT 707;":func4:disp on"!Display the FFT
40 OUTPUT 707;":meas:FFT:thr -47"!Set peak threshold at -47 dBm
50 OUTPUT 707;":meas:FFT:Peak1 2"!Meas magnitude of peak 2
60 OUTPUT 707;":meas:FFT:magn func4"!Perform dfrequency meas
70 OUTPUT 707;":meas:FFT:magn? func4"!Query oscilloscope for
measurement
80 ENTER 707;Magnitude
90 PRINT Magnitude

23-58

Measure Commands
FFT:MAGNitude

100 END

23-59

Measure Commands
FFT:PEAK1

FFT:PEAK1

Command :MEASure:FFT:PEAK1 <1st_peak_number>

The :MEASure:FFT:PEAK1command sets the peak number of the first peak for FFT
measurements. The source is specified with the :MEASure:SOURce command as
FUNCtion<N> or WMEMory<N>.

<1st_peak
_number> An integer, 1 to 100 specifying the number of the first peak.

<N> For functions and waveform memories: 1, 2, 3, or 4.

Query :MEASure:FFT:PEAK1?

The :MEASure:FFT:PEAK1? query returns the peak number currently set as the first
peak.

Returned Format [:MEASure:FFT:PEAK1] <1st_peak_number><NL>

See Also :MEASure:FFT:THReshold
Also see the example for :MEASure:FFT:DFRequency in this chapter.

23-60

Measure Commands
FFT:PEAK2

FFT:PEAK2

Command :MEASure:FFT:PEAK2 <2nd_peak_number>

The :MEASure:FFT:PEAK2 command sets the peak number of the second peak for
FFT measurements. The source is specified with the :MEASure:SOURce command
as FUNCtion<N> or WMEMory<N>.

<2nd_peak
_number>

An integer, 1 to 100 specifying the number of the second peak.

<N> For functions and waveform memories: 1, 2, 3, or 4.

Query :MEASure:FFT:PEAK2?

The :MEASure:FFT:PEAK2? query returns the peak number currently set as the
second peak.

Returned Format [:MEASure:FFT:PEAK1] <2nd_peak_number><NL>

See Also :MEASure:FFT:THReshold
Also see the example for :MEASure:FFT:DFRequency in this chapter.

23-61

Measure Commands
FFT:THReshold

FFT:THReshold

Command :MEASure:FFT:THReshold <threshold_value>

The :MEASure:FFT:THReshold command sets the peak search threshold value in dB.
The dB after the threshold value is optional.

<threshold
_value> A real number specifying the threshold for peaks.

Query :MEASure:FFT:THReshold?

The :MEASure:FFT:THReshold? query returns the peak search threshold value.

Returned Format [:MEASure:FFT:THReshold] <threshold_value><NL>

These :MEASure commands also operate on FFT functions:

See Also Also see the example for :MEASure:FFT:DFRequency in this chapter.

Measure Command Measurement Performed

:TMAX The frequency of the maximum value in the spectrum.

:TMIN The frequency of the minimum value in the spectrum.

:VMAX The maximum value in the spectrum.

:VMIN The minimum value in the spectrum.

:VPP The range of values in the spectrum.

:VTIM The value at a specified frequency.

23-62

Measure Commands
FREQuency

FREQuency

Command :MEASure:FREQuency [<source>[,<direction>]]

The :MEASure:FREQuency command measures the frequency of the first complete
cycle on the screen using the mid-threshold levels of the waveform (50% levels if
standard thresholds are selected). The source is specified with the
:MEASure:SOURce command or with the optional parameter following the
:MEASure:FREQuency command.
The algorithm is:

If the first edge on the screen is rising,
then

frequency = 1/(time at second rising edge - time at first rising edge)
else

frequency = 1/(time at second falling edge - time at first falling edge).

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

<direction> {RISing | FALLing}
Specifies direction of edge for measurement.

The <direction> parameter is only available when the E2681A Jitter Analysis
Software or the N5400A/N5401A Software is installed. When <direction> is
specified, the <source> parameter is required.

23-63

Measure Commands
FREQuency

Example This example measures the frequency of the channel 1 waveform.
10 OUTPUT 707;":MEASURE:FREQUENCY CHANNEL1"
20 END

Query :MEASure:FREQuency? [<source>[,<direction>]]

The :MEASure:FREQuency? query returns the measured frequency.

Returned Format [:MEASure:FREQuency] <value>[,<result_state>]<NL>

<value> The frequency value in Hertz of the first complete cycle on the screen using the
mid-threshold levels of the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current frequency of the waveform in the numeric variable,
Freq, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:FREQUENCY? CHANNEL1"
30 ENTER 707;Freq
40 PRINT Freq
50 END

23-64

Measure Commands
HISTogram:HITS

HISTogram:HITS

Command :MEASure:HISTogram:HITS [<source>]

The :MEASure:HISTogram:HITS command measures the number of hits within the
histogram. The source is specified with the MEASure:SOURce command or with
the optional parameter following the HITS command. The HISTogram:HITS
measurement only applies to the histogram waveform or memories containing
histograms.
The measurement requires that the histogram feature be enabled using the
:HISTogram:MODE command.

<source> {WMEMory<number> | HISTogram}

<number> For waveform memories (WMEMory): 1,2,3, or 4.

Example This example measures the number of hits within the histogram stored in
WMEMory1.
10 OUTPUT 707;"MEASURE:HISTOGRAM:HITS WMEMORY1"
20 END

23-65

Measure Commands
HISTogram:HITS

Query :MEASure:HISTogram:HITS? [<source>]

The :MEASure:HISTogram:HITS? query returns the number of hits within the
histogram.

Returned Format [:MEASure:HISTogram:HITS]<value>[,<result_state>]<NL>

<value> The number of hits in the histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result. Refer
to the MEASure:RESults command, for a list of the result states.

Example This example returns the number of hits within the current histogram and prints the
result to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:HISTOGRAM:HITS? WMEMORY1"
30 ENTER 707;Histhits
40 PRINT Histhits
50 END

23-66

Measure Commands
HISTogram:M1S

HISTogram:M1S

Command :MEASure:HISTogram:M1S [<source>]

The :MEASure:HISTogram:M1S command enables the percentage of points
measurement that are within one standard deviation of the mean of the histogram.
The source is specified with the MEASure:SOURce command or with the optional
parameter following the M1S command. The HISTogram:M1S measurement only
applies to the histogram waveform or memories containing histograms.
The measurement requires that the histogram feature be enabled using the
:HISTogram:MODE command.

<source> {WMEMory<number> | HISTogram }

<number> For waveform memories (WMEMory): 1,2,3, or 4.

Example This example measures the percentage of points that are within one standard deviation
of the mean of the histogram of the data stored in waveform memory 3.
10 OUTPUT 707;"MEASURE:HISTOGRAM:M1S WMEMORY3"
20 END

23-67

Measure Commands
HISTogram:M1S

Query :MEASure:HISTogram:M1S? [<source>]

The :MEASure:HISTogram:M1S? query returns the measurement of the percentage
of points within one standard deviation of the mean of the histogram.

Returned Format [:MEASure:HISTogram:M1S]<value>[,<result_state>]<NL>

<value> The percentage of points within one standard deviation of the mean of the histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result. Refer
to the MEASure:RESults command, for a list of the result states.

Example This example returns the percentage of points within one standard deviation of the
mean of the current histogram and prints the result to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:HISTOGRAM:M1S? WMEMORY1"
30 ENTER 707;Histm1s
40 PRINT Histm1s
50 END

23-68

Measure Commands
HISTogram:M2S

HISTogram:M2S

Command :MEASure:HISTogram:M2S [<source>]

The :MEASure:HISTogram:M2S command enables the percentage of points
measurement that are within two standard deviations of the mean of the histogram.
The source is specified with the MEASure:SOURce command or with the optional
parameter following the M2S command. The HISTogram:M2S measurement only
applies to the histogram waveform or memories containing histograms.
The measurement requires that the histogram feature be enabled using the
:HISTogram:MODE command.

<source> {WMEMory<number> | HISTogram }

<number> For waveform memories (WMEMory): 1,2,3, or 4.

Example This example measures the percentage of points that are within two standard
deviations of the mean of the histogram whose source is specified using the
MEASure:SOURce command.
10 OUTPUT 707;"MEASURE:HISTOGRAM:M2S WMEMORY1"
20 END

23-69

Measure Commands
HISTogram:M2S

Query :MEASure:HISTogram:M2S? [<source>]

The :MEASure:HISTogram:M2S? query returns the measurement of the percentage
of points within two standard deviations of the mean of the histogram.

Returned Format [:MEASure:HISTogram:M2S]<value>[,<result_state>]<NL>

<value> The percentage of points within two standard deviations of the mean of the histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result. Refer
to the MEASure:RESults command, for a list of the result states.

Example This example returns the percentage of points within two standard deviations of the
mean of the current histogram and prints the result to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:HISTOGRAM:M2S? WMEMORY1"
30 ENTER 707;Histm2s
40 PRINT Histm2s
50 END

23-70

Measure Commands
HISTogram:M3S

HISTogram:M3S

Command :MEASure:HISTogram:M3S [<source>]

The :MEASure:HISTogram:M3S command enables the percentage of points
measurement that are within three standard deviations of the mean of the histogram.
The source is specified with the MEASure:SOURce command or with the optional
parameter following the M3S command. The HISTogram:M3S measurement only
applies to the histogram waveform or memories containing histograms.
The measurement requires that the histogram feature be enabled using the
:HISTogram:MODE command.

<source> {WMEMory<number> | HISTogram}

<number> For waveform memories (WMEMory): 1,2,3, or 4.

Example This example measures the percentage of points that are within three standard
deviations of the mean of the histogram.
10 OUTPUT 707;"MEASURE:HISTOGRAM:M3S HISTOGRAM"
20 END

23-71

Measure Commands
HISTogram:M3S

Query :MEASure:HISTogram:M3S? [<source>]

The :MEASure:HISTogram:M3S? query returns the measurement of the percentage
of points within three standard deviations of the mean of the histogram.

Returned Format [:MEASure:HISTogram:M3S]<value>[,<result_state>]<NL>

<value> The percentage of points within three standard deviations of the mean of the
histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result. Refer
to the MEASure:RESults command, for a list of the result states.

Example This example returns the percentage of points within three standard deviations of the
mean of the current histogram and prints the result to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:HISTOGRAM:M3S? WMEMORY1"
30 ENTER 707;Histm3s
40 PRINT Histm3s
50 END

23-72

Measure Commands
HISTogram:MAX?

HISTogram:MAX?

Query :MEASure:HISTogram:MAX? [<source>]

The :MEASure:HISTogram:MAX? query returns the measurement of the maximum
value of the histogram.

<source> {WMEMory<number> | HISTogram }

<number> For waveform memories (WMEMory): 1,2,3, or 4.

Returned Format [:MEASure:HISTogram:MAX]<value>[,<result_state>]<NL>

<value> The maximum value of the histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result. Refer
to the MEASure:RESults command, for a list of the result states.

Example This example returns the maximum value of the current histogram and prints the result
to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:HISTOGRAM:MAX?"
30 ENTER 707;Histmax
40 PRINT Histmax
50 END

23-73

Measure Commands
HISTogram:MEAN?

HISTogram:MEAN?

Query :MEASure:HISTogram:MEAN? [<source>]

The :MEASure:HISTogram:MEAN? query returns the measurement of the mean of
the histogram.

<source> {WMEMory<number> | HISTogram }

<number> For waveform memories (WMEMory): 1,2,3, or 4.

Returned Format [:MEASure:HISTogram:MEAN]<value>[,<result_state>]<NL>

<value> The mean of the histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result. Refer
to the MEASure:RESults command, for a list of the result states.

Example This example returns the mean of the current histogram and prints the result to the
computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:HISTOGRAM:MEAN? WMEMORY1"
30 ENTER 707;Histmean
40 PRINT Histmean
50 END

23-74

Measure Commands
HISTogram:MEDian?

HISTogram:MEDian?

Query :MEASure:HISTogram:MEDian? [<source>]

The :MEASure:HISTogram:MEDian? query returns the measurement of the median
of the histogram.

<source> {WMEMory<number> | HISTogram}

<number> For waveform memories (WMEMory): 1,2,3, or 4.

Returned Format [:MEASure:HISTogram:MEDian]<value>[,<result_state>]<NL>

<value> The median of the histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result. Refer
to the MEASure:RESults command, for a list of the result states.

Example This example returns the median of the current histogram and prints the result to the
computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:HISTOGRAM:MEDIAN? WMEMORY1"
30 ENTER 707;Histmed
40 PRINT Histmed
50 END

23-75

Measure Commands
HISTogram:MIN?

HISTogram:MIN?

Query :MEASure:HISTogram:MIN? [<source>]

The :MEASure:HISTogram:MIN? query returns the measurement of the maximum
value of the histogram.

<source> {WMEMory<number> | HISTogram}

<number> For waveform memories (WMEMory): 1,2,3, or 4.

Returned Format [:MEASure:HISTogram:MIN]<value>[,<result_state>]<NL>

<value> The minimum value of the histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result. Refer
to the MEASure:RESults command, for a list of the result states.

Example This example returns the minimum value of the current histogram and prints the result
to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:HISTOGRAM:MIN?"
30 ENTER 707;Histmin
40 PRINT Histmin
50 END

23-76

Measure Commands
HISTogram:PEAK?

HISTogram:PEAK?

Query :MEASure:HISTogram:PEAK? [<source>]

The :MEASure:HISTogram:PEAK? query returns the number of hits in the greatest
peak of the histogram measurement.

<source> {WMEMory<number> | HISTogram }

<number> For waveform memories (WMEMory): 1,2,3, or 4.

Returned Format [:MEASure:HISTogram:PEAK]<value>[,<result_state>]<NL>

<value> The number of hits in the histogram peak.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result. Refer
to the MEASure:RESults command, for a list of the result states.

Example This example returns the number of hits in the greatest peak of the current histogram
and prints the result to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:HISTOGRAM:PEAK? WMEMORY1"
30 ENTER 707;Histpeak
40 PRINT Histpeak
50 END

23-77

Measure Commands
HISTogram:PP?

HISTogram:PP?

Query :MEASure:HISTogram:PP? [<source>]

The :MEASure:HISTogram:PP? query returns the measurement of the width of the
histogram.

<source> {WMEMory<number> | HISTogram }

<number> For waveform memories (WMEMory): 1,2,3, or 4.

Returned Format [:MEASure:HISTogram:PP]<value>[,<result_state>]<NL>

<value> The width of the histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result. Refer
to the MEASure:RESults command, for a list of the result states.

Example This example returns the width of the current histogram and prints the result to the
computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:HISTOGRAM:PP? WMEMORY1"
30 ENTER 707;Histpp
40 PRINT Histpp
50 END

23-78

Measure Commands
HISTogram:STDDev?

HISTogram:STDDev?

Query :MEASure:HISTogram:STDDev? [<source>]

The :MEASure:HISTogram:STDDev? query returns the measurement of standard
deviation of the histogram.

<source> {WMEMory<number> | HISTogram }

<number> For waveform memories (WMEMory): 1,2,3, or 4.

Returned Format [:MEASure:HISTogram:STDDev]<value>[,<result_state>]<NL>

<value> The standard deviation of the histogram.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result. Refer
to the MEASure:RESults command, for a list of the result states.

Example This example returns the standard deviation of the histogram whose source is specified
using the MEASure:SOURce command and prints the result to the computer’s screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:HISTOGRAM:STDDEV? WMEMORY1"
30 ENTER 707;Histsttd
40 PRINT Histsttd
50 END

23-79

Measure Commands
HOLDtime

HOLDtime

Command :MEASure:HOLDtime [<data_source>,<data_source_dir>,
<clock_source>,<clock_ source_dir>]

The :MEASure:HOLDtime command measures the hold time between the specified
clock and data sources.

<data_source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<clock_source> {CHANnel<N> | FUNCtion<N> | WMEMory<N> | CLOCk | MTRend | MSPectrum
| EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

<data_source
_dir>

{RISing | FALLing | BOTH}
Selects the direction of the data source edge.

This command is only available when the E2681A Jitter Analysis Software or
the N5400A/N5401A Software is installed.

23-80

Measure Commands
HOLDtime

<clock_source
_dir>

{RISing | FALLing}
Selects the direction of the clock source edge.

Example This example measures the hold time from the rising edge of channel 1 to the rising
edge of channel 2.
10 OUTPUT 707;":MEASURE:HOLDTIME CHAN1,RIS,CHAN2,RIS"
20 END

23-81

Measure Commands
HOLDtime

Query :MEASure:HOLDtime?
[<data_source>,<data_source_dir>,<clock_source>,
<clock_ source_dir>]

The :MEASure:HOLDtime? query returns the measured hold time between the
specified clock and data source.

Returned Format {:MEASure:SETuptime] <value><NL>

<value> Hold time in seconds.

Example This example places the current value of hold time in the numeric variable, Time, then
prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:HOLDTIME? CHAN1,RIS,CHAN2,RIS"
30 ENTER 707;Time
40 PRINT Time
50 END

See Also Refer to the :MEASure:RESults? query for information on the results returned and
how they are affected by the SENDvalid command. Refer to the individual
measurements for information on how the result state is returned.

23-82

Measure Commands
JITTer:HISTogram

JITTer:HISTogram

Command :MEASure:JITTer:HISTogram {{ON|1} | {OFF|0}}

The :MEASure:JITTer:HISTogram command turns the measurement histogram
display on or off when a jitter measurement is displayed.

Example This example turns the jitter measurement histogram display on.
10 OUTPUT 707;"MEASURE:JITTER:HISTOGRAM ON"
20 END

Query :MEASure:JITTer:HISTogram?

The :MEASure :JITTer:HISTogram? query returns the state of measurement
histogram display.

Returned format [:MEASure:JITTer:HISTogram] {1 | 0}

Example This example places the current setting of the jitter spectrum mode in the variable
Setting, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:JITTER:HISTOGRAM?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

This command is only available when the E2681A Jitter Analysis Software or
the N5400A/N5401A Software is installed.

23-83

Measure Commands
JITTer:MEASurement

JITTer:MEASurement

Command :MEASure:JITTer:MEASurement {MEASurement<N>}

The :MEASure :JITTer:MEASurement command selects which measurement
displayed on the oscilloscope you are performing the jitter analysis on.
MEASurement1 is the left-most measurement on the display.

<N> {1 | 2 | 3 | 4 | 5}

Example This example assigns measurement 2 to the jitter measurement analysis.
10 OUTPUT 707;":MEASURE:JITTER:MEASUREMENT MEASUREMENT2"
20 END

Query :MEASure:JITTer:MEASurement?

The :MEASure :JITTer:MEASurement? query returns the measurement number you
are performing the jitter analysis on. If no measurements are being displayed on the
oscilloscope, the query will return a null string.

Returned format [:MEASure:JITTer:MEASurement MEASurement<N>]

Example This example places the current measurement number that you are performing jitter
analysis on in the string variable Setting$, then prints the contents of the variable to
the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:JITTER:MEASUREMENT?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

This command is only available when the E2681A Jitter Analysis Software or
the N5400A/N5401A Software is installed.

23-84

Measure Commands
JITTer:SPECtrum

JITTer:SPECtrum

Command :MEASure:JITTer:SPECtrum {{ON|1} | {OFF|0}}

The :MEASure:JITTer:SPECtrum command turns the jitter spectrum display on or
off when a jitter measurement is displayed.

Example This example turns the jitter measurement spectrum display on.
10 OUTPUT 707;":MEASURE:JITTER:SPECTRUM ON"
20 END

Query :MEASure:JITTer:SPECtrum?

The :MEASure :JITTer:SPECtrum? query returns the state of jitter spectrum display.

Returned format [:MEASure:JITTer:SPECtrum] {1 | 0}

Example This example places the current setting of the jitter spectrum mode in the variable
Setting, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:JITTER:SPECTRUM?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

This command is only available when the E2681A Jitter Analysis Software or
the N5400A/N5401A Software is installed.

23-85

Measure Commands
JITTer:SPECtrum:HORizontal

JITTer:SPECtrum:HORizontal

Command :MEASure:JITTer:SPECtrum:HORizontal {AUTO | MANual}

The :MEASure:JITTer:SPECtrum:HORizontal command sets the jitter spectrum
horizontal mode to automatic or manual. In automatic mode, the oscilloscope
automatically selects the horizontal scaling and center frequency. In manual mode,
you can set your own horizontal scaling and center frequency values.

Example This example sets the jitter spectrum horizontal mode to automatic.
10 OUTPUT 707;":MEASURE:JITTER:SPECTRUM:HORIZONTAL AUTO"
20 END

Query :MEASure:JITTer:SPECtrum:HORizontal?

The :MEASure:JITTer:SPECtrum:HORizontal? query returns the current jitter
spectrum horizontal mode setting.

Returned format [:MEASure:JITTer:SPECtrum:HORizontal] {AUTO | MANual}

Example This example places the current setting of the jitter trend horizontal mode in the string
variable Setting$, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:JITTER:SPECTRUM:HORIZONTAL?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

This command is only available when the E2681A Jitter Analysis Software or
the N5400A/N5401A Software is installed.

23-86

Measure Commands
JITTer:SPECtrum:HORizontal:POSition

JITTer:SPECtrum:HORizontal:POSition

Command :MEASure:JITTer:SPECtrum:HORizontal:POSition
<position>

The :MEASure:JITTer:SPECtrum:HORizontal:POSition command sets the jitter
spectrum horizontal center frequency position.

<position> A real number for the center frequency position in Hertz.

Example This example sets the jitter spectrum horizontal center frequency position to 250 kHz.
10 OUTPUT 707;":MEASURE:JITTER:SPECTRUM:HORIZONTAL:POSITION
250E3"
20 END

Query :MEASure:JITTer:SPECtrum:HORizontal:POSition?

The :MEASure:JITTer:SPECtrum:HORizontal:POSition? query returns the current
jitter spectrum horizontal center frequency position setting.

Returned format [:MEASure:JITTer:SPECtrum:HORizontal:POSition] <value><NL>

<value> The jitter spectrum horizontal center frequency setting.

This command is only available when the E2681A Jitter Analysis Software or
the N5400A/N5401A Software is installed.

23-87

Measure Commands
JITTer:SPECtrum:HORizontal:POSition

Example This example places the current setting of the jitter trend horizontal center frequency
position in the variable Value, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:JITTER:SPECTRUM:HORIZONTAL:POSITION?"
30 ENTER 707;Value
40 PRINT Value
50 END

23-88

Measure Commands
JITTer:SPECtrum:HORizontal:RANGe

JITTer:SPECtrum:HORizontal:RANGe

Command :MEASure:JITTer:SPECtrum:HORizontal:RANGe <range>

The :MEASure:JITTer:SPECtrum:HORizontal:RANGe command sets the jitter
spectrum horizontal range.

<range> A real number for the horizontal frequency range in Hertz.

Example This example sets the jitter spectrum horizontal range to 10 GHz (1 GHz/div).
10 OUTPUT 707;":MEASURE:JITTER:SPECTRUM:HORIZONTAL:RANGE 10E9"
20 END

Query :MEASure:JITTer:SPECtrum:HORizontal:RANGe?

The :MEASure:JITTer:SPECtrum:HORizontal:RANGe? query returns the current
jitter spectrum horizontal range setting.

Returned format [:MEASure:JITTer:SPECtrum:HORizontal:RANGe] <value><NL>

<value> The jitter spectrum horizontal range setting.

Example This example places the current setting of the jitter trend horizontal range in the
variable Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:JITTER:SPECTRUM:HORIZONTAL:RANGE?"
30 ENTER 707;Value
40 PRINT Value
50 END

This command is only available when the E2681A Jitter Analysis Software or
the N5400A/N5401A Software is installed.

23-89

Measure Commands
JITTer:SPECtrum:VERTical

JITTer:SPECtrum:VERTical

Command :MEASure:JITTer:SPECtrum:VERTical {AUTO | MANual}

The :MEASure:JITTer:SPECtrum:VERTical command sets the jitter spectrum
vertical mode to automatic or manual. In automatic mode, the oscilloscope
automatically selects the vertical scaling and offset. In manual mode, you can set your
own vertical scaling and offset values.

Example This example sets the jitter spectrum vertical mode to automatic.
10 OUTPUT 707;":MEASURE:JITTER:SPECTRUM:VERTICAL AUTO"
20 END

Query :MEASure:JITTer:SPECtrum:VERTical?

The :MEASure:JITTer:SPECtrum:VERTical? query returns the current jitter
spectrum vertical mode setting.

Returned format [:MEASure:JITTer:SPECtrum:VERTical] {AUTO | MANual}

Example This example places the current setting of the jitter spectrum vertical mode in the
string variable Setting$, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:JITTER:SPECTRUM:VERTICAL?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

This command is only available when the E2681A Jitter Analysis Software or
the N5400A/N5401A Software is installed.

23-90

Measure Commands
JITTer:SPECtrum:VERTical:OFFSet

JITTer:SPECtrum:VERTical:OFFSet

Command :MEASure:JITTer:SPECtrum:VERTical:OFFSet <offset>

The :MEASure:JITTer:SPECtrum:VERTial:OFFSet command sets the jitter
spectrum vertical offset.

<offset> A real number for the vertical offset of the jitter measurement spectrum.

Example This example sets the jitter spectrum vertical offset to 2 ns.
10 OUTPUT 707;":MEASURE:JITTER:SPECTRUM:VERTICAL:OFFSET 10E-9"
20 END

Query :MEASure:JITTer:SPECtrum:VERTical:OFFSet?

The :MEASure:JITTer:SPECtrum:VERTIcal:OFFSet? query returns the jitter
spectrum vertical offset time.

Returned format [:MEASure:JITTer:SPECtrum:VERTical:OFFSet] <value>
[,<result_state>]<NL>

<value> The jitter vertical spectrum offset time setting.

Example This example places the current value of jitter spectrum vertical offset in the numeric
variable, Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:JITTER:SPECTRUM:VERTICAL:OFFSET?"
30 ENTER 707;Value
40 PRINT Value
50 END

This command is only available when the E2681A Jitter Analysis Software or
the N5400A/N5401A Software is installed.

23-91

Measure Commands
JITTer:SPECtrum:VERTical:RANGe

JITTer:SPECtrum:VERTical:RANGe

Command :MEASure:JITTer:SPECtrum:VERTical:RANGe <range>

The :MEASure:JITTer:SPECtrum:VERTial:RANGe command sets the jitter
spectrum vertical range.

<range> A real number for the full-scale vertical range for the jitter measurement spectrum.

Example This example sets the jitter spectrum vertical range to 4 ns (500 ps/div X 8 div).
10 OUTPUT 707;":MEASURE:JITTER:SPECTRUM:VERTICAL:RANGE 4E-9"
20 END

Query :MEASure:JITTer:SPECtrum:VERTical:RANGe?

The :MEASure:JITTer:SPECtrum:VERTIcal:RANGe? query returns the jitter
spectrum range time setting.

Returned Format [:MEASure:JITTer:SPECtrum:VERTical:RANGe] <value>
[,<result_state>]<NL>

<value> The jitter spectrum vertical range setting.

Example This example places the current value of jitter spectrum vertical range in the numeric
variable, Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:JITTER:SPECTRUM:VERTICAL:RANGE?"
30 ENTER 707;Value
40 PRINT Value
50 END

This command is only available when the E2681A Jitter Analysis Software or
the N5400A/N5401A Software is installed.

23-92

Measure Commands
JITTer:SPECtrum:WINDow

JITTer:SPECtrum:WINDow

Command :MEASure:JITTer:SPECtrum:WINDow {RECTangular |
HANNing | FLATtop}

The :MEASure:JITTer:SPECtrum:WINDow command sets the jitter spectrum
window mode to rectangular, Hanning, or flattop.

Example This example sets the jitter spectrum window mode to Hanning.
10 OUTPUT 707;":MEASURE:JITTER:SPECTRUM:WINDOW HANNING"
20 END

Query :MEASure:JITTer:SPECtrum:WINDow?

The :MEASure:JITTer:SPECtrum:WINDow? query returns the current jitter
spectrum window mode setting.

Returned format [:MEASure:JITTer:SPECtrum:WINDow] {RECTangular | HANNing |
FLATtop}<NL>

Example This example places the current setting of the jitter spectrum window mode in the
string variable Setting$, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:JITTER:SPECTRUM:WINDOW?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

This command is only available when the E2681A Jitter Analysis Software or
the N5400A/N5401A Software is installed.

23-93

Measure Commands
JITTer:STATistics

JITTer:STATistics

Command :MEASure:JITTer:STATistics {{ON|1} | {OFF|0}}

The :MEASure:JITTer:STATistics command enables or disables jitter mode and
allows you to view: measurement histogram (:MEASure:JITTer:HISTogram),
measurement trend (:MEASure:JITTer:TRENd), and jitter spectrum
(:MEASure:JITTer:SPsECtrum) if they are enabled. It also turns on the ability to
measure all edges in the waveform; not just the first edge on screen.

Example This example turns the jitter measurement statistics on.
10 OUTPUT 707;":JITTer:STATISTICS ON"
20 END

Query :MEASure:JITTer:STATistics?

The :MEASure :JITTer:STATistics? query returns the state of jitter statistics.

Returned format [:MEASure:JITTer:STATistics] {1 | 0}

Example This example places the current setting of the jitter statistics mode in the variable
Setting, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:JITTER:STATISTICS?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

This command is only available when the E2681A Jitter Analysis Software or
the N5400A/N5401A Software is installed.

23-94

Measure Commands
JITTer:TRENd

JITTer:TRENd

Command :MEASure:JITTer:TRENd {{ON|1} | {OFF|0}}

The :MEASure:JITTer:TRENd command turns the jitter measurement trend display
on or off. When on, trend plots measurement results time correlated to the waveform
being measured.

Example This example turns the jitter measurement trend display on.
10 OUTPUT 707;":MEASURE:JITTER:TREND ON"
20 END

Query :MEASure:JITTer:TRENd?

The :MEASure :JITTer:TRENd? query returns the state of jitter trend display.

Returned format [:MEASure:JITTer:TRENd] {1 | 0}

Example This example places the current setting of the jitter trend mode in the string variable
Setting$, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:JITTER:TREND?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

This command is only available when the E2681A Jitter Analysis Software or
the N5400A/N5401A Software is installed.

23-95

Measure Commands
JITTer:TRENd:SMOoth

JITTer:TRENd:SMOoth

Command :MEASure:JITTer:TRENd:SMOoth {{ON|1} | {OFF|0}}

The :MEASure:JITTer:TRENd:SMOoth command sets jitter trend smoothing to on
or off. When on, smoothing creates a running average smoothed by the number of
points set by the :JITTer:TRENd:SMOoth:POINts command.

Example This example sets the jitter trend smoothing mode to on.
10 OUTPUT 707;":MEASURE:JITTer:TREND:SMOOTH ON"
20 END

Query :MEASure:JITTer:TRENd:SMOoth?

The :MEASure:JITTer:TRENd:SMOoth? query returns the current jitter trend
smoothing mode setting.

Returned format [:MEASure:JITTer:TRENd:SMOoth] {1 | 0}

Example This example places the current setting of the jitter trend smoothing mode in the string
variable Setting$, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:JITTER:TREND:SMOOTH?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

This command is only available when the E2681A Jitter Analysis Software or
the N5400A/N5401A Software is installed.

23-96

Measure Commands
JITTer:TRENd:SMOoth:POINts

JITTer:TRENd:SMOoth:POINts

Command :MEASure:JITTer:TRENd:SMOoth:POINts <points>

The :MEASure:JITTer:TRENd:SMOoth:POINts command sets the number of points
as a set size for the data smoothing feature.

<points> odd integers, 3 to 1001. If out of range, the number will be rounded to nearest lower
odd integer.

Example This example sets the jitter trend smoothing points to 7.
10 OUTPUT 707;":MEASURE:JITTER:TREND:SMOOTH:POINTS 7"
20 END

Query :MEASure:JITTer:TRENd:SMOoth:POINts?

The :MEASure:JITTer:TRENd:SMOoth:POINts? query returns the current setting
for jitter trend smoothing points.

Returned format [:MEASure:JITTer:TRENd:SMOoth:POINts] <value><NL>

<value> The jitter offset smoothing points setting.

Example This example places the current value of jitter trend smoothing points in the numeric
variable, Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:JITTER:TREND:SMOOTH:POINTS?"
30 ENTER 707;Value
40 PRINT Value
50 END

This command is only available when the E2681A Jitter Analysis Software or
the N5400A/N5401A Software is installed.

23-97

Measure Commands
JITTer:TRENd:VERTical

JITTer:TRENd:VERTical

Command :MEASure:JITTer:TRENd:VERTical {AUTO | MANual}

The :MEASure:JITTer:TRENd:VERTIcal command sets the jitter trend vertical mode
to automatic or manual. In automatic mode, the oscilloscope automatically selects the
vertical scaling and offset. In manual mode, you can set your own scaling and offset
values.

Example This example sets the jitter trend vertical mode to automatic.
10 OUTPUT 707;":MEASURE:JITTer:TRENd:VERTical AUTO"
20 END

Query :MEASure:JITTer:TRENd:VERTical?

The :MEASure:JITTer:TRENd:VERTical? query returns the current jitter trend
vertical mode setting.

Returned format [:MEASure:JITTer:TRENd:VERTical] {AUTO | MANual}

Example This example places the current setting of the jitter trend vertical mode in the string
variable Setting$, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:JITTER:TREND:VERTICAL?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

This command is only available when the E2681A Jitter Analysis Software or
the N5400A/N5401A Software is installed.

23-98

Measure Commands
JITTer:TRENd:VERTical:OFFSet

JITTer:TRENd:VERTical:OFFSet

Command :MEASure:JITTer:TRENd:VERTical:OFFSet <offset>

The :MEASure:JITTer:TRENd:VERTial:OFFSet command sets the jitter trend
vertical offset.

<offset> A real number for the vertical offset for the jitter measurement trend.

Example This example sets the jitter trend vertical offset to 100 ps.
10 OUTPUT 707;":MEASURE:JITTER:TREND:VERTICAL:OFFSET 100E-12"
20 END

Query :MEASure:JITTer:TRENd:VERTical:OFFSet?

The :MEASure:JITTer:TRENd:VERTIcal:OFFSet? query returns the jitter trend
vertical offset setting.

Returned format [:MEASure:JITTer:TRENd:VERTical:OFFSet] <value><NL>

<value> The jitter vertical trend offset setting.

Example This example places the current value of jitter trend vertical offset in the numeric
variable, Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:JITTER:TREND:VERTICAL:OFFSET?"
30 ENTER 707;Value
40 PRINT Value
50 END

This command is only available when the E2681A Jitter Analysis Software or
the N5400A/N5401A Software is installed.

23-99

Measure Commands
JITTer:TRENd:VERTical:RANGe

JITTer:TRENd:VERTical:RANGe

Command :MEASure:JITTer:TRENd:VERTical:RANGe <range>

The :MEASure:JITTer:TRENd:VERTial:RANGe command sets the jitter trend
vertical range.

<range> A real number for the full-scale vertical range for the jitter measurement trend.

Example This example sets the jitter trend vertical range to 4 ns (500 ps/div X 8 div).
10 OUTPUT 707;":MEASURE:JITTER:TREND:VERTICAL:RANGE 4E-9"
20 END

Query :MEASure:JITTer:TRENd:VERTical:RANGe?

The :MEASure:JITTer:TRENd:VERTIcal:RANGe? query returns the jitter trend
vertical range setting.

Returned Format [:MEASure:JITTer:TRENd:VERTical:RANGe] <value><NL>

<value> The jitter trend vertical range setting.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current value of jitter trend vertical range in the numeric
variable, Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:JITTER:TREND:VERTICAL:RANGE?"
30 ENTER 707;Value
40 PRINT Value
50 END

This command is only available when the E2681A Jitter Analysis Software or
the N5400A/N5401A Software is installed.

23-100

Measure Commands
NAME

NAME

Command :MEASure:NAME {MEAS1 | MEAS2 | MEAS3 | MEAS4}, <name>

The :MEASure:NAME commands sets the name of the specified measurement to
whatever string is given to <name>. This enables you to give specific names to
measurements displayed on the oscilloscope’s screen.

<name> a quoted string

Query :MEASure:NAME? {MEAS1 | MEAS2 | MEAS3 | MEAS4}

The :MEASure:NAME? query returns the name of the corresponding measurement.

23-101

Measure Commands
NCJitter

NCJitter

Command :MEASure:NCJitter <source>,<direction>,<n>,<start>

The :MEASure:NCJitter command measures the N cycle jitter of the waveform.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

<direction> {RISing | FALLing}, specifies direction of waveform edge to make measurement.

<n> An integer, 1 to 99, the number of cycles in a group.

<start> An integer, 1 to <n> - 1, typically 1, the cycle to start measuring.

Example This example measures the N cycle jitter on channel 1, rising edge, 5 cycles in a group,
starting on the first cycle of the waveform.
10 OUTPUT 707;":MEASURE:NCJITTER CHANNEL1,RISING,5,1"
20 END

This command is only available when the E2681A Jitter Analysis Software or
the N5400A/N5401A Software is installed.

23-102

Measure Commands
NCJitter

Query :MEASure:NCJitter? <source>,<direction>,<n>,<start>

The :MEASure:NCJitter? query returns the measured N cycle jitter time of the
waveform.

Returned Format [:MEASure:NCJitter] <value>[,<result_state>]<NL>

<value> The N cycle jitter time of the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current value of N cycle jitter in the numeric variable, Value,
then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:NCJITTER? CHANNEL1,RIS,5,1"
30 ENTER 707;Value
40 PRINT Value
50 END

23-103

Measure Commands
NPERiod

NPERiod

Command :MEASure:NPERiod <source>, <slope>, <N>

The :MEASure:NPERiod command measures the span of time of N consecutive
periods. The measurement then moves over one period and measures the span of time
of the next N consecutive periods.

<source> the source on which the measurement is made

<slope> rising or falling

<N> An integer greater than or equal to 1.

Example This example meaures the time span of 3 consecutive periods on channel 1 (rising
edge).
10 OUTPUT 707;":MEASURE:NPERiod CHAN1, rising, 3"
20 END

Query :MEASure:NPERiod?

23-104

Measure Commands

Command :MEASure:NPERiod <source>, <N>

The :MEASure:NPERiod command measures N consecutive unit intervals. The
measurement then moves over one unit interval and measures the span of time of the
next N consecutive unit intervals.

<source> the source on which the measurement is made

<N> An integer greater than or equal to 1.

Example This example meaures the time span of 3 consecutive unit intervals on channel 1.
10 OUTPUT 707;":MEASURE:NUI CHAN1, 3"
20 END

Query :MEASure:NUI?

23-105

Measure Commands
NPULses

NPULses

Command :MEASure:NPULses <source>

The :MEASure:NPULses measures the number of negative pulses on the screen.

<source> the source on which the measurement is made

Example This example meaures the number of negative pulses on channel 1.
10 OUTPUT 707;":MEASURE:NPULses CHAN1"
20 END

Query :MEASure:NPULses?

This query returns the result for the NPULses measurement.

23-106

Measure Commands
NWIDth

NWIDth

Command :MEASure:NWIDth [<source>]

The :MEASure:NWIDth command measures the width of the first negative pulse on
the screen using the mid-threshold levels of the waveform (50% levels with standard
threshold selected). Sources are specified with the :MEASure:SOURce command or
with the optional parameter following the :MEASure:NWIDth command.
The algorithm is:

If the first edge on the screen is rising,
then

nwidth = time at the second rising edge − time at the first falling edge
else

nwidth = time at the first rising edge − time at the first falling edge.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

Example This example measures the width of the first negative pulse on the screen.
10 OUTPUT 707;":MEASURE:NWIDTH CHANNEL1"
20 END

23-107

Measure Commands
NWIDth

Query :MEASure:NWIDth? [<source>]

The :MEASure:NWIDth? query returns the measured width of the first negative pulse
of the specified source.

Returned Format [:MEASure:NWIDth] <value>[,<result_state>]<NL>

<value> The width of the first negative pulse on the screen using the mid-threshold levels of
the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current width of the first negative pulse on the screen in the
numeric variable, Width, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:NWIDTH? CHANNEL1"
30 ENTER 707;Width
40 PRINT Width
50 END

23-108

Measure Commands
OVERshoot

OVERshoot

Command :MEASure:OVERshoot [<source>]

The :MEASure:OVERshoot command measures the overshoot of the first edge on
the screen. Sources are specified with the :MEASure:SOURce command or with the
optional parameter following the :MEASure:OVERshoot command.
The algorithm is:

If the first edge on the screen is rising,
then

overshoot = (Local Vmax − Vtop) / Vamplitude
else

overshoot = (Vbase − Local Vmin) / Vamplitude.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

Example This example measures the overshoot of the first edge on the screen.
10 OUTPUT 707;":MEASURE:OVERSHOOT CHANNEL1"
20 END

23-109

Measure Commands
OVERshoot

Query :MEASure:OVERshoot? [<source>]

The :MEASure:OVERshoot? query returns the measured overshoot of the specified
source.

Returned Format [:MEASure:OVERshoot] <value>[,<result_state>]<NL>

<value> Ratio of overshoot to amplitude, in percent.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current value of overshoot in the numeric variable, Value,
then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:OVERSHOOT? CHANNEL1"
30 ENTER 707;Value
40 PRINT Value
50 END

23-110

Measure Commands
PERiod

PERiod

Command :MEASure:PERiod [<source>],<direction>

The :MEASure:PERiod command measures the period of the first complete cycle on
the screen using the mid-threshold levels of the waveform (50% levels with standard
measurements selected). The source is specified with the :MEASure:SOURce
command or with the optional parameter following the :MEASure:PERiod command.
The algorithm is:

If the first edge on the screen is rising,
then

period = time at the second rising edge − time at the first rising edge
else

period = time at the second falling edge − time at the first falling edge.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

<direction> {RISing | FALLing}
Specifies direction of edge to start measurement.

The <direction> parameter is only available when the E2681A Jitter Analysis
Software or the N5400A/N5401A Software is installed. When <direction> is
specified, the <source> parameter is required.

23-111

Measure Commands
PERiod

Example This example measures the period of the waveform.
10 OUTPUT 707;":MEASURE:PERIOD CHANNEL1"
20 END

23-112

Measure Commands
PERiod

Query :MEASure:PERiod? [<source>],<direction>

The :MEASure:PERiod? query returns the measured period of the specified source.

Returned Format [:MEASure:PERiod] <value>[,<result_state>]<NL>

<value> Period of the first complete cycle on the screen.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current period of the waveform in the numeric variable, Value,
then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:PERIOD? CHANNEL1"
30 ENTER 707;Value
40 PRINT Value
50 END

23-113

Measure Commands
PHASe

PHASe

Command :MEASure:PHASe [<source>[,<source>[,<direction>]]]

The :MEASure:PHASe command measures the phase in degrees between two edges.
If two sources are specified, the phase from the specified edge of the first source to
the specified edge of the second source is measured. If one source is specified, the
phase is always 0.0E0.00°.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1-4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

<direction> {RISing | FALLing}
Specifies direction of edge to measure.

Example This example measures the phase between channel 1 and
channel 2.
10 OUTPUT 707;":MEASURE:PHASE CHANNEL1,CHANNEL2"
20 END

The <direction> parameter is only available when the E2681A Jitter Analysis
Software or the N5400A/5401A Software is installed.

23-114

Measure Commands
PHASe

Query :MEASure:PHASe? [<source>[,<source>[,<direction>]]]

The :MEASure:PHASe? query returns the measured phase angle value.
The necessary waveform edges must be present on the display. The query will return
9.99999E+37 if the necessary edges are not displayed.

Returned Format [:MEASure:PHASe] <value>[,result_state]<NL>

<value> Phase angle from the first edge on the first source to the first edge on the second source.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current phase angle value between channel 1 and channel 2
in the variable, Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:PHASE? CHANNEL1,CHANNEL2"
30 ENTER 707;Value
40 PRINT Value
50 END

23-115

Measure Commands
PPULses

PPULses

Command :MEASure:PPULses <source>

The :MEASure:PPULses measures the number of positive pulses on the screen.

<source> the source on which the measurement is made

Example This example meaures the number of positive pulses on channel 1.
10 OUTPUT 707;":MEASURE:PPULses CHAN1"
20 END

Query :MEASure:PPULses?

This query returns the result for the PPULses measurement.

23-116

Measure Commands
PREShoot

PREShoot

Command :MEASure:PREShoot [<source>]

The :MEASure:PREShoot command measures the preshoot of the first edge on the
screen. Sources are specified with the :MEASure:SOURce command or with the
optional parameter following the :MEASure:PREShoot command.
The algorithm is:

If the first edge on the screen is rising,
then

preshoot = (Vbase − Local Vmin) / Vamplitude
else

preshoot = (Local Vmax − Vtop) / Vamplitude.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

Example This example measures the preshoot of the waveform on the screen.
10 OUTPUT 707;":MEASURE:PRESHOOT CHANNEL1"
20 END

23-117

Measure Commands
PREShoot

Query :MEASure:PREShoot?[<source>]

The :MEASure:PREShoot? query returns the measured preshoot of the specified
source.

Returned Format [:MEASure:PREShoot] <value>[,<result state>]<NL>

<value> Ratio of preshoot to amplitude, in percent.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current value of preshoot in the numeric variable, Preshoot,
then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:PRESHOOT? CHANNEL1"
30 ENTER 707;Preshoot
40 PRINT Preshoot
50 END

23-118

Measure Commands
PWIDth

PWIDth

Command :MEASure:PWIDth [<source>]

The :MEASure:PWIDth command measures the width of the first positive pulse on
the screen using the mid-threshold levels of the waveform (50% levels
with standard measurements selected). Sources are specified with the
:MEASure:SOURce command or with the optional parameter following the
:MEASure:PWIDth command.
The algorithm is:

If the first edge on the screen is rising,
then

pwidth = time at the first falling edge − time at the first rising edge
else

pwidth = time at the second falling edge − time at the first rising edge.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

Example This example measures the width of the first positive pulse on the screen.
10 OUTPUT 707;":MEASURE:PWIDTH CHANNEL1"
20 END

23-119

Measure Commands
PWIDth

Query :MEASure:PWIDth?[<source>]

The :MEASure:PWIDth? query returns the measured width of the first positive pulse
of the specified source.

Returned Format [:MEASure:PWIDth] <value>[,<result_state>]<NL>

<value> Width of the first positive pulse on the screen in seconds.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example places the value of the width of the first positive pulse on the screen in
the numeric variable, Width, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:PWIDTH? CHANNEL1"
30 ENTER 707;Width
40 PRINT Width
50 END

23-120

Measure Commands
QUALifier<M>:CONDition

QUALifier<M>:CONDition

Command :MEASure:QUALifier<M>:CONDition {HIGH | LOW |
INSide | OUTSide}

The :MEASure:QUALifier<M>:CONDition
The :MEASure:QUALifier<M>:CONDition command sets the condition when valid
timing measurements are made
• Above Middle Threshold (HIGH)
• Below Middle Threshold (LOW)
• Between Upper, Lower Thresholds (INSide)
• Not Between Thresholds (OUTSide)

<M> An integer, 1-3.

Example This example sets the level qualifier 2 condition to HIGH.
10 OUTPUT 707;":MEASURE:QUALIFIER2:CONDITION HIGH"
20 END

Query :MEASure:QUALifier<M>:CONDition?

The :MEASure:QUALifier<M>:CONDition? query returns the condition
being used of the level qualifier.

Returned Format [:MEASure:QUALifier<M>:CONDition] <source><NL>

Example This example places the current condition of level qualifier for timing measurements
in the source variable and displays it on the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:QUALIFIER2:CONDition?"
30 ENTER 707;Source
40 PRINT Source
50 END

23-121

Measure Commands
QUALifier<M>:SOURce

QUALifier<M>:SOURce

Command :MEASure:QUALifier<M>:SOURce <source>

The :MEASure:QUALifier<M>:SOURce command sets the source of the level
qualify for timing measurements.

<source> CHANnel<N>

<N> An integer, 1- 4.

<M> An integer, 1-3.

Example This example sets the level qualifier 2 source to the channel 1 waveform.
10 OUTPUT 707;":MEASURE:QUALIFIER2:SOURce CHANNEL1"
20 END

Query :MEASure:QUALifier<M>:SOURce?

The :MEASure:QUALifier<M>:SOURce? query returns the source being used
of the level qualifier for timing measurements.

Returned Format [:MEASure:QUALifier<M>:SOURce] <source><NL>

Example This example places the current source of level qualifier for timing measurements in
the source variable and displays it on the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:QUALIFIER2:SOURce?"
30 ENTER 707;Source
40 PRINT Source
50 END

The channel being selected must not be used to make a timing measurement
and must be turned on.

23-122

Measure Commands
QUALifier<M>:STATe

QUALifier<M>:STATe

Command :MEASure:QUALifier<M>:STATe {{ON | 1} | {OFF | 0}}

The :MEASure:QUALifier<M>:STATe command enables or disables level
qualifying for timing measurements.

<M> An integer, 1-3.

Example This example sets the level qualifier 2 state to ON.
10 OUTPUT 707;":MEASURE:QUALIFIER2:STATE ON"
20 END

Query :MEASure:QUALifier<M>:STATe?

The :MEASure:QUALifier<M>:STATe? query returns the state of the level
qualifier for timing measurements.

Returned Format [:MEASure:QUALifier<M>:SOURce] {1 | 0}<NL>

Example This example places the current state of the level qualifier for timing measurements
in the state variable and displays it on the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:QUALIFIER2:STATE?"
30 ENTER 707;state
40 PRINT state
50 END

23-123

Measure Commands
RESults?

RESults?

Query :MEASure:RESults?

The :MEASure:RESults? query returns the results of the continuously displayed
measurements. The response to the MEASure:RESults? query is a list of
comma-separated values. If SENDvalid is ON, the results state is returnedt.
If more than one measurement is running continuously, the values in the
:MEASure:RESults returned are duplicated for each continuous measurement from
the first to last (left to right) result displayed. Each result returned is separated from
the previous result by a comma. There is a maximum of five continuous
measurements that can be continuously displayed at a time.

Returned Format [:MEASure:RESults] <result_list><NL>

<result_list> A list of the measurement results separated with commas. The following shows the
order of values received for a single measurement if :MEASure:STATistics is set to
ON.

Min, max, mean, std dev, and # of meas are only returned if the :MEASure:STATistics
is ON. The result state is only returned if :MEASure:SENDvalid is ON. See Table
23-1 for the meaning of the result state codes.
If the :MEASure:STATistics is set to CURRENT, MAX, MEAN, MIN, or STDDEV
only that particular statistic value is returned for each measurement that is on.

Example This example places the current results of the measurements in the string variable,
Result$, then prints the contents of the variable to the computer's screen.
10 DIM Result$[500]!Dimension variable
20 OUTPUT 707;":MEASURE:RESULTS?"
30 ENTER 707;Result$
40 PRINT Result$
50 END

Measurement label current result state min max mean std dev # of meas

23-124

Measure Commands
RESults?

Table 23-1 Result States

Code Description

0 Result correct. No problem found.

1 Result questionable but could be measured.

2 Result less than or equal to value returned.

3 Result greater than or equal to value returned.

4 Result returned is invalid.

5 Result invalid. Required edge not found.

6 Result invalid. Max not found.

7 Result invalid. Min not found.

8 Result invalid. Requested time not found.

9 Result invalid. Requested voltage not found.

10 Result invalid. Top and base are equal.

11 Result invalid. Measurement zone too small.

12 Result invalid. Lower threshold not on waveform.

13 Result invalid. Upper threshold not on waveform.

14 Result invalid. Upper and lower thresholds are too
close.

15 Result invalid. Top not on waveform.

16 Result invalid. Base not on waveform.

17 Result invalid. Completion criteria not reached.

18 Result invalid. Measurement invalid for this type of
waveform.

19 Result invalid. waveform is not displayed.

20 Result invalid. Waveform is clipped high.

21 Result invalid. Waveform is clipped low.

22 Result invalid. Waveform is clipped high and low.

23 Result invalid. Data contains all holes.

24 Result invalid. No data on screen.

29 Result invalid. FFT peak not found.

30 Result invalid. Eye pattern not found.

31 Result invalid. No NRZ eye pattern found.

33 Result invalid. There is more than one source on
creating the database.

23-125

Measure Commands
RESults?

35 Signal may be too small to evaluate.

36 Result invalid. Awaiting completion of averaging.

39 Result invalid. Need jitter package to make this
measurement or must be in jitter mode to make this
measurement.

40 Current measurement is not on screen.

41 Not enough points available to recover the clock.

42 The loop bandwidth of the PLL is too high to recover
the clock.

43 RJDJ pattern not found in data.

45 Clock recovery mode is not permitted.

46 Too much jitter to make a RJDJ separation.

23-126

Measure Commands
RISetime

RISetime

Command :MEASure:RISetime [<source>]

The :MEASure:RISetime command measures the rise time of the first displayed edge
by measuring the time at the lower threshold of the rising edge, measuring the time
at the upper threshold of the rising edge, then calculating the rise time with the
following algorithm:

Rise time = time at upper threshold point − time at lower threshold point.

To make this measurement requires 4 or more sample points on the rising edge of the
waveform.
Sources are specified with the :MEASure:SOURce command or with the optional
parameter following the RISetime command. With standard thresholds selected, the
lower threshold is at the 10% point and the upper threshold is at the 90% point on the
rising edge.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

Example This example measures the rise time of the channel 1 waveform.
10 OUTPUT 707;":MEASURE:RISETIME CHANNEL1"
20 END

23-127

Measure Commands
RISetime

Query :MEASure:RISetime?[<source>]

The :MEASure:RISetime? query returns the rise time of the specified source.

Returned Format [:MEASure:RISetime] <value>[,<result_state>]<NL>

<value> Rise time in seconds.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current value of rise time in the numeric variable, Rise, then
prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:RISETIME? CHANNEL1"
30 ENTER 707;Rise
40 PRINT Rise
50 END

23-128

Measure Commands
RJDJ:ALL?

RJDJ:ALL?

Query :MEASure:RJDJ:ALL?

The :MEASure:RJDJ:ALL? query returns all of the RJDJ jitter measurements.
These values are returned as comma separated values using the following format:

Returned Format [:MEASure:RJDJ:ALL<space>]
TJ(<tj_format>),<tj_result>,<tj_state>,
RJ(<rj_format>),<rj_result>,<rj_state>,
DJ(<dj_format>),<dj_result>,<dj_state>,
PJ(<pj_format>),<pj_result>,<pj_state>,
PJ(<pj_format>),<pj_result>,<pj_state>,
DDJ(<ddj_format>),<ddj_result>,<ddj_state>,
DCD,<dcd_result>,<dcd_state>,
ISI(<isi_format>),<isi_result>,<isi_state>,
Transitions,<number_of_transitions><NL>

<space> White space (ASCII 32) character.

<tj_format>
<rj_format>
<dj_format>
<pj_format>
<pj_format>
<ddj_format>
<isi_format>

The format value tells you something about how the measurement is made. For
instance, TJ(1E-12) means that the TJ measurement was derived using a bit error rate
of 1E-12. A format of (rms) means the measurement is a root-mean-square
measurement. A format of (d-d) means the measurement uses a dual-Dirac delta
model to derive the measurement. A format of (p-p) means the measurement is a
peak-to-peak measurement.

<tj_result>
<rj_result>
<dj_result>
<pj_result>
<pj_result>
<ddj_result>
<isi_result>

The measured results for the RJDJ measurements. A value of 9.99999E+37 means
that the oscilloscope was unable to make the measurement.

This command is only available when the N5400A/N5401A Software is
installed.

23-129

Measure Commands
RJDJ:ALL?

<tj_state>
<rj_state>
<dj_state>
<pj_state>
<pj_state>

<ddj_state>
<isi_state>

The measurement result state. See Table 23-1 on page 124 for a list of values and
descriptions of the result state value.

<number_of_
transitions>

The number of waveform transistions that have been measured.

Example This example places the jitter measures in the Results variable and displays it on the
computer's screen.
5 DIM Result$[500]!Dimension variable
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:RJDJ:ALL?"
30 ENTER 707;Results$
40 PRINT Results$
50 END

23-130

Measure Commands
RJDJ:BANDwidth

RJDJ:BANDwidth

Command :MEASure:RJDJ:BANDwidth {NARRow | WIDE}

The :MEASure:RJDJ:BANDwidth command sets the type of filtering used to
separate the data dependent jitter form the random jitter and the periodic jitter.

Example This example sets the RJ bandwidth to WIDE.
10 OUTPUT 707;":MEASURE:RJDJ:BANDWIDTH WIDE"
20 END

Query :MEASure:RJDJ:BANDwidth?

The :MEASure:RJDJ:BANDwidth? query returns the RJ bandwidth filter setting.

Returned Format [:MEASure:RJDJ:BANDwidth] {NARRow | WIDE}<NL>

Example This example places the RJ filter setting the Filter variable and displays it on the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:RJDJ:BANDWIDTH?"
30 ENTER 707;Filter
40 PRINT Filter
50 END

This command is only available when the N5400A/N5401A Software is
installed.

23-131

Measure Commands
RJDJ:BER

RJDJ:BER

Command :MEASure:RJDJ:BER {E6 | E7 | E8 | E9 | E10 | E11 |
E12 | E13 | E14 | E15 | E16 | E17 | E18}

The :MEASure:RJDJ:BER command sets the bit error rate for the Total Jitter (TJ)
measurement. The E parameters have the following bit error rate meanings:

E6 = 1E-6
E7 = 1E-7
E8 = 1E-8
E9 = 1E-9
E10 = 1E-10
E11 = 1E-11
E12 = 1E-12
E13 = 1E-13
E14 = 1E-14
E15 = 1E-15
E16 = 1E-16
E17 = 1E-17
E18 = 1E-18

Example This example sets the bit error rate to E16.
10 OUTPUT 707;":MEASURE:RJDJ:BER E16"
20 END

This command is only available when the N5400A/N5401A Software is
installed.

23-132

Measure Commands
RJDJ:BER

Query :MEASure:RJDJ:BER?

The :MEASure:RJDJ:BER? query returns the bit error rate setting.

Returned Format [:MEASure:RJDJ:BER] {E6 | E7 | E8 | E9 | E10 | E11 | E12 |
E13 | E14 | E15 | E16 | E17 | E18}<NL>

Example This example places the bit error rate in the Rate variable and displays it on the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:RJDJ:BER?"
30 ENTER 707;Rate
40 PRINT Rate
50 END

23-133

Measure Commands
RJDJ:EDGE

RJDJ:EDGE

Command :MEASure:RJDJ:EDGE {RISING | FALLING | BOTH}

The :MEASure:RJDJ:EDGE command sets the edge used for the RJDJ
measurements.

Example This example sets the RJDJ edge to use both edges.
10 OUTPUT 707;":MEASURE:RJDJ:EDGE BOTH"
20 END

Query :MEASure:RJDJ:EDGE?

The :MEASure:RJDJ:EDGE? query returns the edge being used for the RJDJ
measurements.

Returned Format [:MEASure:RJDJ:EDGE] {RISING | FALLING | BOTH}<NL>

Example This example places the current edge being used for RJDJ measurements in the edge
variable and displays it on the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:RJDJ:EDGE?"
30 ENTER 707;edge
40 PRINT edge
50 END

This command is only available when the N5400A/N5401A Software is
installed.

23-134

Measure Commands
RJDJ:INTerpolate

RJDJ:INTerpolate

Command :MEASure:RJDJ:INTerpolate {LINear | NONE}

The :MEASure:RJDJ:INTerpolate command sets the interpolation mode used
for the RJDJ measurements.

Example This example sets the RJDJ interpolation to use both linear.
10 OUTPUT 707;":MEASURE:RJDJ:INTERPOLATE LINEAR"
20 END

Query :MEASure:RJDJ:INTerpolate?

The :MEASure:RJDJ:INTerpolate? query returns the edge being used for the
RJDJ measurements.

Returned Format [:MEASure:RJDJ:INTerpolate] {LINear | NONE}<NL>

Example This example places the current interpolation mode being used for RJDJ
measurements in the interpolate variable and displays it on the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:RJDJ:INTERPOLATE?"
30 ENTER 707;interpolate
40 PRINT interpolate
50 END

This command is only available when the N5400A/N5401A Software is
installed.

23-135

Measure Commands
RJDJ:PLENgth

RJDJ:PLENgth

Command :MEASure:RJDJ:PLENgth {AUTO |
{ARBitrary,<isi_filter_lead>,<isi_filter_lag>} |
<number_of_bits>}

The :MEASure:RJDJ:PLENgth command sets the number of bits used pattern
length for the RJDJ measurements.

<isi_filter_
lead> An integer number that is less than or equal to 0 that is the number of leading bits that

are used to calculate the ISI filter.

<isi_filger_
lag} An integer number that is greater than or equal to 0 that is the number of trailing bits

used to calculate the ISI filter.

<number_of_
bits> An integer number that is the length of pattern from 2 to 1024.

Example This example sets the RJDJ bits to 5.
10 OUTPUT 707;":MEASURE:RJDJ:PLENgth 5"
20 END

Query :MEASure:RJDJ:PLENgth?

The :MEASure:RJDJ:PLENgth? query returns the number of bits being used for
the RJDJ measurements when Periodic pattern length is set. For Arbitrary pattern
length, the ISI filter lead and filter lag numbers are returned.

Returned Format [MEASure:RJDJ:PLENgth] {AUTO |
ARBitrary,<isi_filter_lead>,<isi_filter_lag> |
<number_of_bits>}<NL>

This command is only available when the N5400A/N5401A Software is
installed.

23-136

Measure Commands
RJDJ:PLENgth

Example This example places the current number of bits for RJDJ measurements in the bits
variable and displays it on the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:RJDJ:PLENgth?"
30 ENTER 707;bits
40 PRINT bits
50 END

23-137

Measure Commands
RJDJ:SOURce

RJDJ:SOURce

Command :MEASure:RJDJ:SOURce <source>

The :MEASure:RJDJ:SOURce command sets the source for the RJDJ
measurements.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N> | CLOCk | MTRend | MSPectrum
| EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

Example This example sets the RJDJ source to the channel 1 waveform.
10 OUTPUT 707;":MEASURE:RJDJ:SOURce CHANNEL1"
20 END

Query :MEASure:RJDJ:SOURce?

The :MEASure:RJDJ:SOURce? query returns the source being used for the RJDJ
measurements.

Returned Format [:MEASure:RJDJ:SOURce] <source><NL>

Example This example places the current source for RJDJ measurements in the source variable
and displays it on the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off

This command is only available when the N5400A/N5401A Software is
installed.

23-138

Measure Commands
RJDJ:SOURce

20 OUTPUT 707;":MEASURE:RJDJ:SOURce?"
30 ENTER 707;Source
40 PRINT Source
50 END

23-139

Measure Commands
RJDJ:STATe

RJDJ:STATe

Command :MEASure:RJDJ:STATe {ON | OFF}

The :MEASure:RJDJ:STATe command enables or disables the RJDJ
measurements.

Example This example sets the RJDJ state to on.
10 OUTPUT 707;":MEASURE:RJDJ:STATE ON"
20 END

Query :MEASure:RJDJ:STATe?

The :MEASure:RJDJ:STATe? query returns the state of the RJDJ measurements.

Returned Format [:MEASure:RJDJ:STATe] {1 | 0}<NL>

Example This example places the current state of the RJDJ measurements in the state variable
and displays it on the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:RJDJ:STATE?"
30 ENTER 707;state
40 PRINT state
50 END

This command is only available when the N5400A/N5401A Software is
installed.

23-140

Measure Commands
RJDJ:TJRJDJ?

RJDJ:TJRJDJ?

Query :MEASure:RJDJ:TJRJDJ?

The :MEASure:RJDJ:TJRJDJ? query returns the Total Jitter (TJ), Random Jitter
(RJ), and the Deterministic Jitter (DJ) measurements. These values are returned as
comma separated values using the following format:

Returned Format [:MEASure:RJDJ:TJRJDJ]
TJ(<tj_format>),<tj_result>,<tj_state>,
RJ(<rj_format>),<rj_result>,rj_state,
DJ(<dj_format>),<dj_result>,<dj_state><NL>

<tj_format>
<rj_format>
<dj_format>

The format value tells you something about how the measurement is made. For
instance, TJ(1E-12) means that the TJ measurement was derived using a bit error rate
of 1E-12. A format of (rms) means the measurement is a root-mean-square
measurement. A format of (d-d) means the measurement uses from a dual-Dirac delta
model used to derive the measurement. A format of (p-p) means the measurement
is a peak-to-peak measurement.

<tj_result>
<rj_result>
<dj_result>

The measured results for the RJDJ measurements. A value of 9.99999E+37 means
that the oscilloscope was unable to make the measurement.

<tj_state>
<rj_state>
<dj_state>

The measurement result state. See Table 23-1 on page 124 for a list of values and
descriptions of the result state value.

Example This example places the current source for RJDJ measurements in the source variable
and displays it on the computer's screen.
5 DIM Result$[500]!Dimension variable
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:RJDJ:TJRJDJ?"
30 ENTER 707;Result$
40 PRINT Result$
50 END

This command is only available when the N5400A/N5401A Software is
installed.

23-141

Measure Commands
RJDJ:UNITs

RJDJ:UNITs

Command :MEASure:RJDJ:UNITs {SECond | UNITinterval}

The :MEASure:RJDJ:UNITs command sets the unit of measure for RJDJ
measurements to seconds or unit intervals.

Example This example sets the RJDJ units to unit interval.
10 OUTPUT 707;":MEASURE:RJDJ:UNITS UNITINTERVAL"
20 END

Query :MEASure:RJDJ:UNITs?

The :MEASure:RJDJ:UNITs? query returns the units of measure being used for
the RJDJ measurements.

Returned Format [:MEASure:RJDJ:UNITs] {SECond | UNITinterval}<NL>

Example This example places the current units of measure for the RJDJ measurements in the
units variable and displays it on the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:RJDJ:UNITS?"
30 ENTER 707;units
40 PRINT units
50 END

This command is only available when the N5400A/N5401A Software is
installed.

23-142

Measure Commands
SCRatch

SCRatch

Command :MEASure:{SCRatch | CLEar}

The :MEASure:SCRatch command clears the measurement results from the screen.
This command performs the same function as :MEASure:CLEar.

Example This example clears the current measurement results from the screen.
10 OUTPUT 707;":MEASURE:SCRATCH"
20 END

23-143

Measure Commands
SENDvalid

SENDvalid

Command :MEASure:SENDvalid {{OFF|0} | {ON|1}}

The :MEASure:SENDvalid command enables the result state code to be returned with
the :MEASure:RESults? query and all other measurement queries.

Example This example turns the send valid function on.
10 OUTPUT 707;":MEASURE:SENDVALID ON"
20 END

Query :MEASure:SENDvalid?

The :MEASure:SENDvalid? query returns the state of the send valid control.

Returned Format {:MEASure:SENDvalid] {0 | 1}<NL>

Example This example places the current mode for SENDvalid in the string variable, Mode$,
then prints the contents of the variable to the computer's screen.
10 DIM Mode$[50]!Dimension variable
20 OUTPUT 707;":MEASURE:SENDVALID?"
30 ENTER 707;Mode$
40 PRINT Mode$
50 END

See Also Refer to the :MEASure:RESults? query for information on the results returned and
how they are affected by the SENDvalid command. Refer to the individual
measurements for information on how the result state is returned.

23-144

Measure Commands
SETuptime

SETuptime

Command :MEASure:SETuptime
[<data_source>,<data_source_dir>,<clock_source>,
<clock_ source_dir>]

The :MEASure:SETuptime command measures the setup time between the specified
clock and data source.

<data_source> {CHANnel<N> | FUNCtion<N> | WMEMory<N> | CLOCk | MTRend | MSPectrum
| EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<clock_source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

<data_source
_dir>

{RISing | FALLing | BOTH}
Selects the direction of the data source edge. BOTH selects both edges to be
measured.

This command is only available when the E2681A Jitter Analysis Software or
the N5400A/5401A Software is installed.

23-145

Measure Commands
SETuptime

<clock_source
_dir>

{RISing | FALLing}
Selects the direction of the clock source edge.

Example This example measures the setup time from the rising edge of channel 1 to the rising
edge of channel 2.
10 OUTPUT 707;":MEASURE:SETUPTIME CHAN1,RIS,CHAN2,RIS"
20 END

23-146

Measure Commands
SETuptime

Query :MEASure:SETuptime?
[<data_source>,<data_source_dir>,<clock_source>,
<clock_ source_dir>]

The :MEASure:SETuptime query returns the measured setup time between the
specified clock and data source.

Returned Format {:MEASure:SETuptime] <value><NL>

<value> Setup time in seconds.

Example This example places the current value of setup time in the numeric variable, Time,
then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:SETUPTIME? CHAN1,RIS,CHAN2,RIS"
30 ENTER 707;Time
40 PRINT Time
50 END

23-147

Measure Commands
SLEWrate

SLEWrate

Command :MEASure:SLEWrate [<data_source>]

The :MEASure:SLEWrate command measures the slew rate of the specified data
source.

<data_source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> is an integer, 1 - 4.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

Example This example measures the slew rate of channel 1.
10 OUTPUT 707;":MEASURE:SLEWRATE CHAN1"
20 END

Query :MEASure:SLEWrate? [<data_source>]

The :MEASure:SLEWrate? query returns the measured slew rate for the specified
source.

Returned Format {:MEASure:SLEWrate] <value><NL>

<value> Slew rate in volts per second.

Example This example places the channel 1 value of slew rate in the numeric variable, Time,
then prints the contents of the variable to the computer's screen.

This command is only available when the E2681A Jitter Analysis Software is
installed.

23-148

Measure Commands
SLEWrate

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:SLEWRATE? CHAN1"
30 ENTER 707;Time
40 PRINT Time
50 END

23-149

Measure Commands
SOURce

SOURce

Command :MEASure:SOURce {<source>[,<source>]}

The :MEASure:SOURce command selects the source for measurements. You can
specify one or two sources with this command. All measurements except
:MEASure:HOLDtime, :MEASure:SETUPtime, and :MEASure:DELTatime are
made on the first specified source. The delta time measurement uses two sources if
two are specified.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

Example This example selects channel 1 as the source for measurements.
10 OUTPUT 707;":MEASURE:SOURCE CHANNEL1"
20 END

Query :MEASure:SOURce?

The :MEASure:SOURce? query returns the current source selection.

Returned Format [:MEASure:SOURce] <source>[,<source>]<NL>

Example This example places the currently specified sources in the string variable, Source$,
then prints the contents of the variable to the computer's screen.

23-150

Measure Commands
SOURce

10 DIM Source$[50]!Dimension variable
20 OUTPUT 707;":MEASURE:SOURCE?"
30 ENTER 707;Source$
40 PRINT Source$
50 END

23-151

Measure Commands
STATistics

STATistics

Command :MEASure:STATistics {{ON | 1} | CURRent | MAXimum |
MEAN | MINimum | STDDev}

The :MEASure:STATistics command determines the type of information returned by
the :MEASure:RESults? query. ON means all the statistics are on.

Example This example turns all the statistics function on.
10 OUTPUT 707;":MEASURE:STATISTICS ON"
20 END

Query :MEASure:STATistics?

The :MEASure:STATistics? query returns the current statistics mode.

Returned Format [:MEASure:STATistics] {ON | CURRent | MAXimum | MEAN | MINimum
| STDDev}<NL>

Example This example places the current mode for statistics in the string variable, Mode$, then
prints the contents of the variable to the computer's screen.
10 DIM Mode$[50]!Dimension variable
20 OUTPUT 707;":MEASURE:STATISTICS?"
30 ENTER 707;Mode$
40 PRINT Mode$
50 END

See Also Refer to the :MEASure:RESults? query for information on the result returned and
how it is affected by the STATistics command.

23-152

Measure Commands
TEDGe

TEDGe

Command :MEASure:TEDGe <meas_thres_txt>,
[<slope>]<occurrence>[,<source>]

The :MEASure:TEDGe command measures the time interval between the trigger
event and the specified edge (threshold level, slope, and transition). Sources are
specified with the :MEASure:SOURce command or with the optional parameter
following the :MEASure:TEDGe command.

<meas_thres
_txt>

UPPer, MIDDle, or LOWer to identify the threshold.

<slope> { - (minus) for falling | + (plus) for rising | <none> (the slope is optional; if no
slope is specified, + (plus) is assumed) }

<occurrence> An integer value representing the edge of the occurrence. The desired edge must be
present on the display. Edges are counted with 1 being the first edge from the left on
the display, and a maximum value of 65534.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

23-153

Measure Commands
TEDGe

Query :MEASure:TEDGe? <meas_thres_txt>,
<slope><occurrence> [,<source>]

The :MEASure:TEDGe? query returns the time interval between the trigger event and
the specified edge (threshold level, slope, and transition).

Returned Format [:MEASure:TEDGe] <time>[,<result_state>]<NL>

<time> The time interval between the trigger event and the specified voltage level and
transition.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example returns the time interval between the trigger event and the 90% threshold
on the second rising edge of the source waveform to the numeric variable, Time. The
contents of the variable are then printed to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:TEDGE? UPPER,+2,CHANNEL1"
30 ENTER 707;Time
40 PRINT Time
50 END

Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers.
Otherwise, the headers may cause misinterpretation of returned data.

23-154

Measure Commands
THResholds:ABSolute

THResholds:ABSolute

Command :MEASure:THResholds:ABSolute <source>,
<upper_volts>,<middle_volts>,<lower_volts>

The :MEASure:THResholds:ABSolute command sets the upper level, middle level,
and lower level voltages that are used to calculate the measurements that use them.

<source> {ALL | CHANnel<N> | FUNCtion<N> | WMEMory<N> | DIGital<M> | CLOCk
| MTRend | MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.
Setting the source to ALL does not affect the individual channel settings which is the
behavior as the user interface.

<N> is an integer, 1 - 4.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

<upper_volts>
<middle_volts>
<lower_volts> A real number specifying voltage thresholds.

Example This example sets the custom voltage thresholds to 0.9 volts for the upper level, 0.5
volts for the middle level and 0.1 volts for the lower level on channel 2.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:THRESHOLDS:ABSOLUTE
CHANNEL2,0.9,0.5,0.1"
30 END

23-155

Measure Commands
THResholds:ABSolute

Query :MEASure:THResholds:ABSolute? <source>

The :MEASure:THResholds:ABSolute? query returns the current settings for upper
level, middle level, and lower level voltages for the custom thresholds.

Returned Format [:MEASure:THResholds:ABSolute]
<upper_volts>,<middle_volts>,<lower_volts><NL>

Example This example returns the upper level, middle level, and lower level voltages used to
calculate the measurements on channel 1.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:THRESHOLDS:ABSOLUTE? CHANNEL1"
30 ENTER 707;Upper,Middle,Lower
40 PRINT Upper,Middle,Lower
50 END

Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers.
Otherwise, the headers may cause misinterpretation of returned data.

23-156

Measure Commands
THResholds:HYSTeresis

THResholds:HYSTeresis

Command :MEASure:THResholds:HYSTeresis <source>,
<range>,<level>

The :MEASure:THResholds:HYSTeresis command sets the range and level voltages
that are used to calculate the measurements that use them. The range is added to the
level to determine the upper level voltage for measurements that use it. The range is
subtracted from the level to determine the lower level voltage. The level is the middle
level voltage.

<source> {ALL | CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk
| MTRend | MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.
Setting the source to ALL does not affect the individual channel settings which is the
behavior as the user interface.

<N> is an integer, 1 - 4.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

<range> A real number specifying voltage range for the hysteresis around the level value.

<level> A real number specifying voltage level.

Example This example sets the hysteresis range to 0.9 volts and 0.1 volts for the level on channel
2.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:THRESHOLDS:HYSTERESIS
CHANNEL2,0.9,0.5,0.1"
30 END

23-157

Measure Commands
THResholds:HYSTeresis

Query :MEASure:THResholds:HYSTeresis? <source>

The :MEASure:THResholds:HYSTeresis? query returns the current settings for upper
level, middle level, and lower level voltages for the custom thresholds.

Returned Format [:MEASure:THResholds:HYSTeresis]<range>,<level><NL>

Example This example returns the range and level voltages used to calculate the measurements
on channel 1.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:THRESHOLDS:HYSTERESIS? CHANNEL1"
30 ENTER 707;Range,Level
40 PRINT Range,Level
50 END

Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers.
Otherwise, the headers may cause misinterpretation of returned data.

23-158

Measure Commands
THResholds:METHod

THResholds:METHod

Command :MEASure:THResholds:METHod <source>,{ABSolute |
PERCent | HYSTeresis}

The :MEASure:THResholds:METHold command determines the way that the top
and base of a waveform are calculated for all of the measurements that use them.

<source> {ALL | CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk
| MTRend | MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.
Setting the source to ALL does not affect the individual channel settings which is the
behavior as the user interface.

<N> is an integer, 1 - 4.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

Example This example sets the method used to calculate the top and base of a waveform to
hysteresis.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:THRESHOLDS:METHOD CHANNEL1,HYSTERESIS"
30 END

Query :MEASure:THResholds:METHod?

The :MEASure:THResholds:METHod? query returns the current method being used
to calculate the top and base of a waveform.

Returned Format [:MEASure:THResholds:METHod <source>,] {ABSolute |
PERCent | HYSTeresis}

23-159

Measure Commands
THResholds:METHod

Example This example returns the method used to calculate the top and base of a waveform to
hysteresis.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:THRESHOLDS:METHOD?"
30 ENTER 707;Method
40 PRINT Method
50 END

23-160

Measure Commands
THResholds:PERCent

THResholds:PERCent

Command :MEASure:THResholds:PERCent <source>,
<upper_pct>,<middle_pct>,<lower_pct

The :MEASure:THResholds:PERCent command sets the upper level, middle level,
and lower level voltages as a percentage of the top and base voltages which are used
to calculate the measurements that use them.

<source> {ALL | CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk
| MTRend | MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.
Setting the source to ALL does not affect the individual channel settings which is the
behavior as the user interface.

<N> is an integer, 1 - 4.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

<upper_pct>
<middle_pct>
<lower_pct>

A real number specifying upper percentage from -24.8 to 125.0
A real number specifying the middle percentage from -24.9 to 124.9.
A real number specifying the lower percentage from -25.0 to 125.8

Example This example sets the percentage to 100% for the upper level, 50% for the middle
level and 0% for the lower level on channel 2.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:THRESHOLDS:PERCENT CHANNEL2,100,50,0"
30 END

23-161

Measure Commands
THResholds:PERCent

Query :MEASure:THResholds:PERCent? <source>

The :MEASure:THResholds:PERCent? query returns the current settings for upper
level, middle level, and lower level percentages.

Returned Format [:MEASure:THResholds:PERCent]
<upper_pct>,<middle_pcts>,<lower_pct><NL>

Example This example returns the upper level, middle level, and lower level percentages used
to calculate the measurements on channel 1.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:THRESHOLDS:PERCENT? CHANNEL1"
30 ENTER 707;Upper,Middle,Lower
40 PRINT Upper,Middle,Lower
50 END

Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers.
Otherwise, the headers may cause misinterpretation of returned data.

23-162

Measure Commands
THResholds:TOPBase:METHod

THResholds:TOPBase:METHod

Command :MEASure:THResholds:TOPBase:METHod
<source>,{ABSolute | HISTONLY | MINmax | STANdard}

The :MEASure:THResholds:TOPBase:METHold command determines the way that
the top and base of a waveform are derived for all of the measurements that use them.

<source> {ALL | CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk
| MTRend | MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.
Setting the source to ALL does not affect the individual channel settings which is the
behavior as the user interface.

<N> is an integer, 1 - 4.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

Example This example sets the method used to derive the top and base of a waveform to the
histogram method.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:THRESHOLDS:TOPBASE:METHOD
CHANNEL1,HISTONLY"
30 END

Query :MEASure:THResholds:TOPBase:METHod?

The :MEASure:THResholds:TOPBase:METHod? query returns the current method
being used to calculate the top and base of a waveform.

Returned Format [:MEASure:THResholds:TOPBase:METHod] {ABSolute |
HISTONLY | MINmax | STANdard}

23-163

Measure Commands
THResholds:TOPBase:METHod

Example This example returns the method used to derive the top and base of a waveform for
channel 1.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:THRESHOLDS:TOPBASE:METHOD CHANNEL1"
30 ENTER 707;Method
40 PRINT Method
50 END

23-164

Measure Commands
THResholds:TOPBase:ABSolute

THResholds:TOPBase:ABSolute

Command :MEASure:TOPBase:THResholds:ABSolute <source>,
<top_volts>,<base_volts>

The :MEASure:TOPBase:THResholds:ABSolute command sets the top level and
base level voltages that are used to calculate the measurements that use them.

<source> {ALL | CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk
| MTRend | MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.
Setting the source to ALL does not affect the individual channel settings which is the
behavior as the user interface.

<N> is an integer, 1 - 4.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

<top_volts>
<base_volts> A real number specifying voltage levels. The top voltage level must be greater than

the base voltage level.

Example This example sets the voltage level for the top to 0.9 volts and the voltage level for
the base to 0.1 volts on channel 2.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:THRESHOLDS:TOPBASE:ABSOLUTE
CHANNEL2,0.9,0.1"
30 END

23-165

Measure Commands
THResholds:TOPBase:ABSolute

Query :MEASure:THResholds:TOPBase:ABSolute? <source>

The :MEASure:THResholds:TOPBase:ABSolute? query returns the current settings
for top level and base level voltages.

Returned Format [:MEASure:THResholds:TOPBase:ABSolute]
<top_volts>,<base_volts><NL>

Example This example returns the top level and base level voltages used to calculate the
measurements on channel 1.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:THRESHOLDS:TOPBASE:ABSOLUTE? CHANNEL1"
30 ENTER 707;Top,Base
40 PRINT Top,Base
50 END

Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers.
Otherwise, the headers may cause misinterpretation of returned data.

23-166

Measure Commands
TIEClock2

TIEClock2

Command :MEASure:TIEClock2 <source>,{SECond | UNITinterval},
<direction>,{AUTO | CUSTOM,<frequency>} |
{VARiable,<frequency>,<bandwidth>} | CLOCk}

The :MEASure:TIEClock2 command measures time interval error on a clock. You
can set the units of the measurement by selecting SECond (seconds) or UNITinterval.
If AUTO is selected, the oscilloscope selects the ideal constant clock frequency. If
CUSTom is selected, you can enter your own ideal clock frequency. If VARiable is
selected, a first order PLL clock recovery is used at the give clock frequency and loop
bandwidth. If CLOCk is given, clock recovery is specified with the
:MEASure:CLOCk:METHod command.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

<direction> {RISing | FALLing | BOTH}
Specifies direction of clock edge. BOTH selects the first edge from the left-hand side
of the waveform viewing area.

Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers.
Otherwise, the headers may cause misinterpretation of returned data.

This command is only available when the E2681A Jitter Analysis Software or
the N5400A/5401A Software is installed.

23-167

Measure Commands
TIEClock2

<frequency> A real number for the ideal clock frequency for clock recovery.

<bandwidth> A real number for the loop bandwidth of the PLL clock recovery method.

Example This example measures the clock time interval error on the rising edge of channel 1,
ideal clock frequency set to automatic, units set to seconds.
10 OUTPUT 707;":MEASURE:TIECLOCK2 CHANNEL1,SECOND,RISING,AUTO"
20 END

23-168

Measure Commands
TIEClock2

Query :MEASure:TIEClock2? <source>,{SECond |
UNITinterval},<direction>,{AUTO |
CUSTOM,<frequency> |
{VARiable,<frequency>,<bandwidth>} | CLOCk}

The :MEASure:TIEClock2? query returns the current value of the clock time interval
error.

Returned format [:MEASure:TIEClock2] <value>[,<result_state>]<NL>

<value> The clock time interval error value.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current value of the clock time interval error in the variable
Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:TIECLOCK2?
CHANNEL1,SECOND,FALLING,CUSTOM,2.5E9"
30 ENTER 707;Value$
40 PRINT Value$
50 END

23-169

Measure Commands
TIEData

TIEData

Command :MEASure:TIEData <source>,{SECond | UNITinterval},
{AUTO | CUSTOM,<data_rate> |
VARiable,<data_rate>,<bandwidth> | CLOCk}

The :MEASure:TIEData command measures data time interval error. You can set the
units of the measurement by selecting SECond (seconds) or UNITinterval. If AUTO
is selected, the oscilloscope selects the ideal data rate. If CUSTom is selected, you
can enter your own ideal constant data rate. If VARiable is selected, a first order PLL
clock recovery is used at a given data rate and loop bandwidth. If CLOCk is given,
clock recovery as specified with the :MEASure:CLOCk:METHod is used.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

<data_rate> A real number for the ideal data rate for clock recovery.

<bandwidth> A real number for the loop bandwidth of the PLL clock recovery method.

This command is only available when the E2681A Jitter Analysis Software,
Serial Data Analysis, or the N5400A/5401A Software is installed.

23-170

Measure Commands
TIEData

Example This example measures the data time interval error on channel 1, ideal data rate set
to automatic, units set to seconds.
10 OUTPUT 707;":MEASURE:TIEDATA CHANNEL1,SECOND,AUTO"
20 END

23-171

Measure Commands
TIEData

Query :MEASure:TIEData? <source>,(SECond | UNITinterval},
{AUTO | CUSTom,<frequency> |
VARiable,<frequency>,<bandwidth> | CLOCk}

The :MEASure:TIEData? query returns the current value of the data time interval
error.

Returned format [:MEASure:TIEData] <value>[,<result_state>]<NL>

<value> The data time interval error value.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current value of the data time interval error in the variable
Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":MEASURE:TIEDATA? CHANNEL1,SECOND,CUSTOM,1E9"
30 ENTER 707;Value$
40 PRINT Value$
50 END

23-172

Measure Commands
TIEFilter:STARt

TIEFilter:STARt

Command :MEASure:TIEFilter:STARt <start_frequency>

The :MEASure:TIEFilter:STARt command sets the starting frequency for the TIE
filter.

<start_
frequency>

A real number.

Query :MEASure:TIEFilter:STARt?

The :MEASure:TIEFilter:STARt? query returns the current value of the starting
frequency of the TIE filter.

Returned Format [:MEASure:TIEFilter:STARt] <value><NL>

<value> The start frequency for the TIE filter.

Example This example returns the current value of the starting frequency for the TIE filter then
prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:TIEFILTER:START?"
30 ENTER 707;Start
40 PRINT Start
50 END

23-173

Measure Commands
TIEFilter:STATe

TIEFilter:STATe

Command :MEASure:TIEFilter:STATe {{ON | 1} | {OFF | 0}}

The :MEASure:TIEFilter:STATe command enables the TIE filter for TIE data
measurements.

Query :MEASure:TIEFilter:STATe?

The :MEASure:TIEFilter:STATe? query returns the current state of the TIE data filter.

Returned Format [:MEASure:TIEFilter:STATe] {0 | 1}<NL>

Example This example returns the current state of the TIE data filter then prints the contents
of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:TIEFILTER:STATE?"
30 ENTER 707;State
40 PRINT State
50 END

23-174

Measure Commands
TIEFilter:STOP

TIEFilter:STOP

Command :MEASure:TIEFilter:STOP <stop_frequency>

The :MEASure:TIEFilter:STOP command sets the stopping frequency for the TIE
filter.

<stop_
frequency>

A real number.

Query :MEASure:TIEFilter:STOP?

The :MEASure:TIEFilter:STOP? query returns the current value of the stopping
frequency of the TIE filter.

Returned Format [:MEASure:TIEFilter:STOP] <value><NL>

<value> The stop frequency for the TIE filter.

Example This example returns the current value of the stopping frequency for the TIE filter
then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:TIEFILTER:START?"
30 ENTER 707;Stop
40 PRINT Stop
50 END

23-175

Measure Commands
TIEFilter:TYPE

TIEFilter:TYPE

Command :MEASure:TIEFilter:TYPE {BANDpass | LOWPass |
HIGHpass}

The :MEASure:TIEFilter:TYPE command sets the type of TIE filter to be used.

Example This example sets the TIE filter to highpass.
10 OUTPUT 707;":MEASURE:TIEFilter:TYPE HIGHpass"
20 END

Query :MEASure:TIEFilter:TYPE?,

The :MEASure:TIEFilter:TYPE? query returns the current type of TIE filter being
used.

Returned Format [:MEASure:TIEFilter:TYPE] {BANDpass | LOWPass |
HIGHpass}<NL>

Example This example places the current mode for TIEFilter:TYPE in the string variable,
Mode$, then prints the contents of the variable to the computer's screen.
10 DIM Mode$[50]!Dimension variable
20 OUTPUT 707;":MEASURE:TIEFilter:TYPE?"
30 ENTER 707;Mode$
40 PRINT Mode$
50 END

23-176

Measure Commands
TMAX

TMAX

Command :MEASure:TMAX [<source>]

The :MEASure:TMAX command measures the first time at which the maximum
voltage of the source waveform occurred. Sources are specified with the
:MEASure:SOURce command or with the optional parameter following the
:MEASure:TMAX command.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

Query :MEASure:TMAX? [<source>]

The :MEASure:TMAX? query returns the time at which the first maximum voltage
occurred.

Returned Format [:MEASure:TMAX] <time>[,<result_state>]<NL>

<time> Time at which the first maximum voltage occurred or frequency where the maximum
FFT amplitude occurred.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example returns the time at which the first maximum voltage occurred to the
numeric variable, Time, then prints the contents of the variable to the computer's
screen.

23-177

Measure Commands
TMAX

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:TMAX? CHANNEL1"
30 ENTER 707;Time
40 PRINT Time
50 END

23-178

Measure Commands
TMIN

TMIN

Command :MEASure:TMIN [<source>]

The :MEASure:TMIN command measures the time at which the first minimum
voltage occurred. Sources are specified with the :MEASure:SOURce command or
with the optional parameter following the :MEASure:TMIN command.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

Query :MEASure:TMIN? [<source>]

The :MEASure:TMIN? query returns the time at which the first minimum voltage
occurred or the frequency where the minimum FFT amplitude occurred.

Returned Format [:MEASure:TMIN] <time>[,<result_state>]<NL>

<time> Time at which the first minimum voltage occurred.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example returns the time at which the first minimum voltage occurred to the
numeric variable, Time, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:TMIN? CHANNEL1"

23-179

Measure Commands
TMIN

30 ENTER 707;Time
40 PRINT Time
50 END

23-180

Measure Commands
TVOLt

TVOLt

Command :MEASure:TVOLt <voltage>,[<slope>]<occurrence>
[,<source>]

The :MEASure:TVOLt command measures the time interval between the trigger
event and the defined voltage level and transition. Sources are specified with the
:MEASure:SOURce command or with the optional parameter following the
:MEASure:TVOLt command.
The TEDGe command can be used to get the time of edges.

Query :MEASure:TVOLt? <voltage>,<slope><occurrence>
[,<source>]

The :MEASure:TVOLt? query returns the time interval between the trigger event and
the specified voltage level and transition.

<voltage> Voltage level at which time will be measured.

<slope> The direction of the waveform change when the specified voltage is crossed - rising
(+) or falling (−). If no +/- sign is present, + is assumed.

<occurrence> The number of the crossing to be reported (if one, the first crossing is reported; if two,
the second crossing is reported, etc.). The desired crossing must be present on the
display. Occurrences are counted with 1 being the first occurrence from the left of
the display, and a maximum value of 65534.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

23-181

Measure Commands
TVOLt

Returned Format [:MEASure:TVOLt] <time>[,<result_state>]<NL>

<time> The time interval between the trigger event and the specified voltage level and
transition.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example returns the time interval between the trigger event and the transition
through −.250 Volts on the third rising occurrence of the source waveform to the
numeric variable, Time. The contents of the variable are then printed to the computer's
screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:TVOLT? -.250,+3,CHANNEL1"
30 ENTER 707;Time
40 PRINT Time
50 END

23-182

Measure Commands
UITouijitter

UITouijitter

Command :MEASure:UITouijitter <source>, <N>

The :MEASure:UITouijitter command measures the difference between two
consecutive N-UI measurements. The measurement then moves over one unit interval
and makes another measurement. When N=1, this is analogous to cycle-cycle jitter,
but measures unit intervals instead of periods. When N>1, this is analogous to N-Cycle
jitter but measures unit intervals instead of periods.

<source> the source on which the measurement is made

<N> An integer greater than or equal to 1.

Example This example meaures the UI-UI jitter for 3 consecutive unit intervals on channel 1.
10 OUTPUT 707;":MEASURE:UITouijitter CHAN1, 3"
20 END

Query :MEASure:UITouijitter?

23-183

Measure Commands
UNITinterval

UNITinterval

Command :MEASure:UNITinterval <source>[,{AUTO |
(SEMI,<data_rate>)}]

The :MEASure:UNITinterval command measures the unit interval value of the
selected source. Use the :MEASure:DATarate command/query to measure the data
rate of the source

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

<data_rate> A real number representing the data rate.

 Example This example measures the unit interval of channel 1.
10 OUTPUT 707;"MEASURE:UNITINTERVAL CHANNEL1"
20 END

Query :MEASure:UNITinterval? <source>[,{AUTO |
(SEMI,<data_rate>)}]

The :MEASure:UNITinterval? query returns the measured unit interval.

This command is only available when the E2681A Jitter Analysis Software or
the N5400A/5401A Software is installed.

23-184

Measure Commands
UNITinterval

Returned Format [:MEASure:UNITinterval] <value>[,<result_state>]<NL>

<value> Unit interval of the source.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current unit interval of the channel 1 waveform in the numeric
variable, Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:UNITINTERVAL? CHANNEL1”
30 ENTER 707;Value
40 PRINT Value
50 END

23-185

Measure Commands
VAMPlitude

VAMPlitude

Command :MEASure:VAMPlitude [<source>]

The :MEASure:VAMPlitude command calculates the difference between the top and
base voltage of the specified source. Sources are specified with the
:MEASure:SOURce command or with the optional parameter following the
:MEASure:VAMPlitude command.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

Example This example calculates the difference between the top and base voltage of the
specified source.
10 OUTPUT 707;":MEASURE:VAMPLITUDE CHANNEL1"
20 END

Query :MEASure:VAMPlitude? [<source>]

The :MEASure:VAMPlitude? query returns the calculated difference between the top
and base voltage of the specified source.

Returned Format [:MEASure:VAMPlitude] <value>[,<result_state>]<NL>

<value> Calculated difference between the top and base voltage.

23-186

Measure Commands
VAMPlitude

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current Vamplitude value in the numeric variable, Value, then
prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:VAMPLITUDE? CHANNEL1"
30 ENTER 707;Value
40 PRINT Value
50 END

23-187

Measure Commands
VAVerage

VAVerage

Command :MEASure:VAVerage {CYCLe | DISPlay}[,<source>]

The :MEASure:VAVerage command calculates the average voltage over the displayed
waveform. Sources are specified with the :MEASure:SOURce command or with the
optional parameter following the :MEASure:VAVerage command.

CYCLe The CYCLe parameter instructs the average measurement to measure the average
voltage across the first period on the display.

DISPlay The DISPlay parameter instructs the average measurement to measure all the data on
the display.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

Example This example calculates the average voltage over the displayed waveform.
10 OUTPUT 707;":MEASURE:VAVERAGE DISPLAY,CHANNEL1"
20 END

23-188

Measure Commands
VAVerage

Query :MEASure:VAVerage? {CYCLe | DISPlay}[,<source>]

The :MEASure:VAVerage? query returns the calculated average voltage of the
specified source. Sources are specified with the :MEASure:SOURce command or
with the optional parameter following the :MEASure:VAVerage command.

Returned Format [:MEASure:VAVerage] <value>[,<result_state>]<NL>

<value> The calculated average voltage.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current average voltage in the numeric variable, Average,
then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:VAVERAGE? DISPLAY,CHANNEL1 CHANNEL1"
30 ENTER 707;Average
40 PRINT Average
50 END

23-189

Measure Commands
VBASe

VBASe

Command :MEASure:VBASe [<source>]

The :MEASure:VBASe command measures the statistical base of the waveform.
Sources are specified with the :MEASure:SOURce command or with the optional
parameter following the :MEASure:VBASe command.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

Example This example measures the voltage at the base of the waveform.
10 OUTPUT 707;":MEASURE:VBASE CHANNEL1"
20 END

23-190

Measure Commands
VBASe

Query :MEASure:VBASe? [<source>]

The :MEASure:VBASe? query returns the measured voltage value at the base of the
specified source.

Returned Format [:MEASure:VBASe] <value>[,<result_state>]<NL>

<value> Voltage at the base of the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example returns the current voltage at the base of the waveform to the numeric
variable, Voltage, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:VBASE? CHANNEL1"
30 ENTER 707;Voltage
40 PRINT Voltage
50 END

23-191

Measure Commands
VLOWer

VLOWer

Command :MEASure:VLOWer [<source>]

The :MEASure:VLOWer command measures the voltage value at the lower threshold
of the waveform. Sources are specified with the :MEASure:SOURce command or
with the optional parameter following the :MEASure:VLOWer command.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

Query :MEASure:VLOWer?

The :MEASure:VLOWer? query returns the measured lower threshold of the selected
source.

Returned Format [:MEASure:VLOWer] <value>[,<result_state>]<NL>

<value> Voltage value at the lower threshold.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example returns the measured voltage at the lower threshold of the waveform to
the numeric variable, Vlower, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:VLOW? CHANNEL1"

23-192

Measure Commands
VLOWer

30 ENTER 707;Vlower
40 PRINT Vlower
50 END

23-193

Measure Commands
VMAX

VMAX

Command :MEASure:VMAX [<source>]

The :MEASure:VMAX command measures the absolute maximum voltage present
on the selected source waveform. Sources are specified with the :MEASure:SOURce
command or with the optional parameter following the :MEASure:VMAX command.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

Example This example measures the absolute maximum voltage on the waveform.
10 OUTPUT 707;":MEASURE:VMAX CHANNEL1"
20 END

23-194

Measure Commands
VMAX

Query :MEASure:VMAX? [<source>]

The :MEASure:VMAX? query returns the measured absolute maximum voltage or
maximum FFT amplitude present on the selected source waveform.

Returned Format [:MEASure:VMAX] <value>[,<result_state>]<NL>

<value> Absolute maximum voltage present on the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example returns the measured absolute maximum voltage on the waveform to
the numeric variable, Maximum, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:VMAX? CHANNEL1"
30 ENTER 707;Maximum
40 PRINT Maximum
50 END

23-195

Measure Commands
VMIDdle

VMIDdle

Command :MEASure:VMIDdle [<source>]

The :MEASure:VMIDdle command measures the voltage level at the middle
threshold of the waveform. Sources are specified with the :MEASure:SOURce
command or with the optional parameter following the :MEASure:VMIDdle
command.

Query :MEASure:VMIDdle? [<source>]

The :MEASure:VMIDdle? query returns the voltage value at the middle threshold of
the waveform.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

Returned Format [MEASure:VMIDdle] <value>[,<result_state>]<NL>

<value> The middle voltage present on the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example returns the measured middle voltage on the waveform to the numeric
variable, Middle, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:VMID? CHANNEL1"

23-196

Measure Commands
VMIDdle

30 ENTER 707;Middle
40 PRINT Middle
50 END

23-197

Measure Commands
VMIN

VMIN

Command :MEASure:VMIN [<source>]

The :MEASure:VMIN command measures the absolute minimum voltage present on
the selected source waveform. Sources are specified with :MEASure:SOURce or
with the optional parameter following the :MEASure:VMIN command.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

Example This example measures the absolute minimum voltage on the waveform.
10 OUTPUT 707;":MEASURE:VMIN CHANNEL1"
20 END

23-198

Measure Commands
VMIN

Query :MEASure:VMIN? [<source>]

The :MEASure:VMIN? query returns the measured absolute minimum voltage or
minimum FFT amplitude present on the selected source waveform.

Returned Format [:MEASure:VMIN] <value>[,<result_state>]<NL>

<value> Absolute minimum voltage present on the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example returns the measured absolute minimum voltage on the waveform to
the numeric variable, Minimum, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:VMIN? CHANNEL1"
30 ENTER 707;Minimum
40 PRINT Minimum
50 END

23-199

Measure Commands
VPP

VPP

Command :MEASure:VPP [<source>]

The :MEASure:VPP command measures the maximum and minimum voltages on the
selected source, then calculates the peak-to-peak voltage as the difference between
the two voltages. Sources are specified with the :MEASure:SOURce command or
with the optional parameter following the :MEASure:VPP command.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

Example This example measures the peak-to-peak voltage or FFT amplitude range of the
previously selected source.
10 OUTPUT 707;":MEASURE:VPP CHANNEL1"
20 END

23-200

Measure Commands
VPP

Query :MEASure:VPP? [<source>]

The :MEASure:VPP? query returns the specified source peak-to-peak voltage.

Returned Format [:MEASure:VPP] <value>[,<result_state>]<NL>

<value> Peak-to-peak voltage of the selected source.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current peak-to-peak voltage in the numeric variable, Voltage,
then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:VPP? CHANNEL1"
30 ENTER 707;Voltage
40 PRINT Voltage
50 END

23-201

Measure Commands
VRMS

VRMS

Command :MEASure:VRMS {CYCLe | DISPlay},{AC | DC} [,<source>]

The :MEASure:VRMS command measures the RMS voltage of the selected
waveform by subtracting the average value of the waveform from each data point on
the display. Sources are specified with the :MEASure:SOURce command or with the
optional parameter following the :MEASure:VRMS command.

CYCLe The CYCLe parameter instructs the RMS measurement to measure the RMS voltage
across the first period of the display.

DISPlay The DISPLay parameter instructs the RMS measurement to measure all the data on
the display. Generally, RMS voltage is measured across one waveform or cycle,
however, measuring multiple cycles may be accomplished with the DISPLay option.
The DISPlay parameter is also useful when measuring noise.

AC The AC parameter is used to measure the RMS voltage subtracting the DC component.

DC The DC parameter is used to measure RMS voltage including the DC component.
The AC RMS, DC RMS, and VAVG parameters are related as in this formula:
DCVRMS2=ACVRMS2+VAVG2

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

Example This example measures the RMS voltage of the previously selected waveform.
10 OUTPUT 707;":MEASURE:VRMS CYCLE,AC,CHANNEL1"
20 END

23-202

Measure Commands
VRMS

23-203

Measure Commands
VRMS

Query :MEASure:VRMS? {CYCLe | DISPlay},{AC | DC}
[,<source>]

The :MEASure:VRMS? query returns the RMS voltage of the specified source.

Returned Format [:MEASure:VRMS] <value>[,<result_state>]<NL>

<value> RMS voltage of the selected waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example places the current AC RMS voltage over one period of the waveform
in the numeric variable, Voltage, then prints the contents of the variable to the
computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:VRMS? CYCLE,AC,CHANNEL1"
30 ENTER 707;Voltage
40 PRINT Voltage
50 END

23-204

Measure Commands
VTIMe

VTIMe

Command :MEASure:VTIMe <time>[,<source>]

The :MEASure:VTIMe command measures the voltage at the specified time. The
time is referenced to the trigger event and must be on the screen. When an FFT
function is the specified source, the amplitude at the specified frequency is measured.
Sources are specified with the :MEASure:SOURce command or with the optional
parameter following the :MEASure:VTIMe command.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

<time> A real number for time from trigger in seconds, or frequency in Hertz for an FFT
(when a function is set to FFT or a waveform memory contains an FFT).

Query :MEASure:VTIMe? <time>[,<source>]

The :MEASure:VTIMe? query returns the measured voltage or amplitude.

Returned Format [:MEASure:VTIMe] <value>[,<result_state>]<NL>

<value> Voltage at the specified time. When the source is an FFT function, the returned value
is the vertical value at the horizontal setting passed in the VTIMe <time> parameter.
The time parameter is in Hertz when an FFT function is the source.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

23-205

Measure Commands
VTIMe

Example This example places the voltage at 500 ms in the numeric variable, Value, then prints
the contents to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:VTIME? 500E−3,CHANNEL1"
30 ENTER 707;Value
40 PRINT Value
50 END

23-206

Measure Commands
VTOP

VTOP

Command :MEASure:VTOP [<source>]

The :MEASure:VTOP command measures the statistical top of the selected source
waveform. Sources are specified with the :MEASure:SOURce command or with the
optional parameter following the :MEASure:VTOP command.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

Example This example measures the voltage at the top of the waveform.
10 OUTPUT 707;":MEASURE:VTOP CHANNEL1"
20 END

23-207

Measure Commands
VTOP

Query :MEASure:VTOP? [<source>]

The :MEASure:VTOP? query returns the measured voltage at the top of the specified
source.

Returned Format [:MEASure:VTOP] <value>[,<result_state>]<NL>

<value> Voltage at the top of the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example places the value of the voltage at the top of the waveform in the numeric
variable, Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:VTOP? CHANNEL1"
30 ENTER 707;Value
40 PRINT Value
50 END

23-208

Measure Commands
VUPPer

VUPPer

Command :MEASure:VUPPer [<source>]

The :MEASure:VUPPer command measures the voltage value at the upper threshold
of the waveform. Sources are specified with the MEASure:SOURce command or
with the optional parameter following the :MEASure:VUPPer command.

<source> {CHANnel<N> | FUNCtion<N> | DIGital<M> | WMEMory<N> | CLOCk | MTRend
| MSPectrum | EQUalized}
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<M> An integer, 0 - 15. Digital channels are only available on MSO models or DSO models
with the MSO license installed.

Example This example measures the voltage at the upper threshold of the waveform.
10 OUTPUT 707;":MEASURE:VUPPer CHANNEL1"
20 END

23-209

Measure Commands
VUPPer

Query :MEASure:VUPPer? [<source>]

The :MEASure:VUPPer? query returns the measured upper threshold value of the
selected source.

Returned Format [:MEASure:VUPPer] <value>[,<result_state>]<NL>

<value> Voltage at the upper threshold.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. See the
:MEASure:RESults table in this chapter for a list of the result states.

Example This example places the value of the voltage at the upper threshold of the waveform
in the numeric variable, Value, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:VUPPER? CHANNEL1"
30 ENTER 707;Value
40 PRINT Value
50 END

23-210

Measure Commands
WINdow

WINdow

Command :MEASure:WINdow {ZOOM | All}, {MEASN}

The :MEASure:WINdow command enables you to only make measurements in the
zoom window (measurement gating).

Example This example gates Measurement 1 to the zoom window.
10 OUTPUT 707;"MEASURE:WINdow ZOOM, MEAS1"
20 END

Query

:MEASure:WINdow? {MEASN}

This query returns whether the measurement is being performed on the zoomed
portion of the waveform (ZOOM) or the entire acquisition (ALL).

24

Pod Commands

Pod Commands

The :POD modes and commands described in this chapter include:

• DISPlay
• THReshold
• PSKew

The POD commands only apply to the Mixed-Signal Oscilloscopes.
24- 2

Pod Commands
DISPlay
DISPlay

Command :POD<N>[:DISPlay] {ON | OFF | 1 | 0}

The :POD<N>:DISPlay command enables or disables the view of selected pod. Pod
1 is bits D7 through D0 and pod 2 is bits D15 through D8. The digital subsystem
must be enabled before this command will work. See ENABle command in the root
subsystem.

<N> An integer, 1 - 2.

Example This example turns on the view of pod 2.
10 Output 707;:ENABLE DIGITAL”
20 Output 707;”:POD2 ON”
30 END

Query :POD<N>:DISPlay?

The :POD<N>:DISPlay? query returns the current digital display setting for the
selected pod.

Returned Format [:POD<N>:DISPlay] {1 | 0}<NL>

The POD commands only apply to Mixed-Signal Oscilloscopes.
24- 3

Pod Commands
THReshold
THReshold

Command :POD<N>:THReshold {CMOS50 | CMOS30 | CMOS25 | ECL |
PECL | TTL | <value>}

The :POD<N>:THReshold command sets the logic threshold value for the selected
pod. POD1 is digital channels D0 through D7 and POD2 is digital channels D8
through D15. The threshold is used for triggering purposes and for displaying the
digital data as high (above the threshold) or low (below the threshold). The voltage
values for the predefined thresholds are:

CMOS50=2.5 V
CMOS33=1.65 V
CMOS25=1.25 V
ECL=-1.3 V
PECL=3.7 V
TTL=1.4 V

<N> An integer, 1 - 2.

<value> A real number representing the voltage value which distinguishes a 1 logic level from
a 0 logic level. Waveform voltages greater than the threshold are 1 logic levels while
waveform vlotages less than the threshold are 0 logic levels. The range of the
threshold voltage is from -8 volts to 8 volts.

Query :POD<N>:THREShold?

The :POD<N>:THReshold? query returns the threshold value for the specified pod.

Return format [:POD<N>:THReshold] {CMOS50 | CMOS33 | CMOS25 | ECL | PECL |
TTL | <value>}<NL>

The POD commands only apply to Mixed-Signal Oscilloscopes.
24- 4

Pod Commands
PSKew
PSKew

Command :POD<N>:PSKew <value>

The :POD<N>:PSKew command sets the probe skew between the analog channels
and the digital channels. This allows you to adjust for time delay differences due to
cables or probe length differences between the analog and digital channels.

<value> A real number representing the probe skew between the analog and digital channels.
The range of probe skew is from -100 μs to 100 μs.

Example This example sets the probe skew to 1 ps.
10 Output 707;”:POD1:PSKew 1E-12”
20 END

Query :POD<N>:PSKew?

The :POD<N>:PSKew? query returns the probe skew value.

Return format [:POD<N>:PSKew] <value><NL>

The POD commands only apply to Mixed-Signal Oscilloscopes.
24- 5

24- 6

25

Root Level Commands

25-2

Root Level Commands

Root level commands control many of the basic operations of the oscilloscope
that you can select by pressing the labeled keys on the front panel. These
commands are always recognized by the parser if they are prefixed with a
colon, regardless of the current tree position. After executing a root level
command, the parser is positioned at the root of the command tree.

These root level commands and queries are implemented in the Infiniium
Oscilloscopes:

• ADER? (Acquisition Done Event Register)
• AER? (Arm Event Register)
• ATER? (Auto Trigger Event Register)
• AUToscale
• AUToscale:CHANnels
• AUToscale:PLACement
• AUToscale:VERTical
• BEEP
• BLANk
• CDISplay
• DIGitize
• ENABle Digital
• DISable Digital
• MTEE (Mask Test Enable Register)
• MTER? (Mask Test Event Register)
• MODel?
• OPEE (Operation Status Enable)
• OPER? (Operation Status Register)
• OVLRegister
• PDER?
• PRINt
• RECall:SETup
• RUN
• SERial (Serial Number)
• SINGle
• STATus?

25-3

• STOP
• STORe:JITTer
• STORe:SETup
• STORe:WAVeform
• TER? (Trigger Event Register)
• VIEW

25-4

Root Level Commands
ADER? (Acquisition Done Event Register)

ADER? (Acquisition Done Event Register)

Query :ADER?

The :ADER? query reads the Acquisition Done Event Register and returns 1 or 0.
After the Acquisition Done Event Register is read, the register is cleared. The returned
value 1 indicates an acquisition completed event has occurred and 0 indicates an
acquisition completed event has not occurred.
Once the Done bit is set, it is cleared only by doing :ADER? or by sending a *CLS
command.

Returned Format {1 | 0}<NL>

25-5

Root Level Commands
AER? (Arm Event Register)

AER? (Arm Event Register)

Query :AER?

The :AER? query reads the Arm Event Register and returns 1 or 0. After the Arm
Event Register is read, the register is cleared. The returned value 1 indicates a trigger
armed event has occurred and 0 indicates a trigger armed has not occurred.

Once the AER bit is set, it is cleared only by doing :AER? or by sending a *CLS
command.

Returned Format {1 | 0}<NL>

Arm Event Returns

:AER? will allow the Arm Event to return either immediately (if you have
armed but not triggered) or on the next arm (if you have already triggered).
However, *CLS is always required to get an SRQ again.

25-6

Root Level Commands
ATER? (Auto Trigger Event Register)

ATER? (Auto Trigger Event Register)

Query :ATER?

The :ATER? query reads the Auto Trigger Event Register and returns 1 or 0. After
the Auto Trigger Event Register is read, the register is cleared. The returned value 1
indicates an auto trigger event has occurred and 0 indicates an auto trigger event has
not occurred.

Returned Format {1 | 0}<NL>

25-7

Root Level Commands
AUToscale

AUToscale

Command :AUToscale

The :AUToscale command causes the oscilloscope to evaluate all input waveforms
and find the optimum conditions for displaying the waveform. It searches each of the
channels for input waveforms and shuts off channels where no waveform is found. It
adjusts the vertical gain and offset for each channel that has a waveform, and sets the
time base on the lowest numbered input channel that has a waveform.
The trigger is found by searching each channel, starting with channel 4, then
channel 3, channel 2, and channel 1, until a trigger waveform is detected. If
waveforms cannot be found on any vertical input, the oscilloscope is returned to its
former state.
Autoscale sets the following:
• Channel Display, Scale, and Offset
• Trigger Sweep, Mode, Edge, Source, Level, Slope, Hysteresis, and Holdoff
• Acquisition Sampling Rate and Memory Depth
• Time Base Scale and Position
• Marker Mode Set to Measurement
• Resets Acquisition Completion Criteria to 90%

Autoscale turns off the following:
• Measurements on sources that are turned off
• Functions
• Windows
• Memories
No other controls are affected by Autoscale.

Example This example automatically scales the oscilloscope for the input waveform.
10 OUTPUT 707;":AUTOSCALE"
20 END

25-8

Root Level Commands
AUToscale:CHANnels {ALL | DISPlayed}

AUToscale:CHANnels {ALL | DISPlayed}

Command :AUToscale:CHANNels {ALL | DISPlayed}

The :AUToscale:CHANnels command selects whether to apply autoscale to all of the
input channels or just the input channels that are currently displayed.

Example This example automatically scales only the displayed channels.
10 OUTPUT 707;":AUTOSCALE:CHANnels DISPlayed"
20 END

25-9

Root Level Commands
AUToscale:PLACement {STACk | SEParate | OVERlay}

AUToscale:PLACement {STACk | SEParate | OVERlay}

Command :AUToscale:PLACement {STACk | SEParate | OVERlay}

The :AUToscale:PLACement command controls how the waveforms are displayed
on the oscilloscope when the autoscale command is used. If Stack is chosen then each
waveform’s amplitude is decreased and then the waveforms are offset so each takes
up a different vertical portion of the screen. This makes it easier to view them, but
decreases the accuracy of any measurements performed on the waveforms because
they no longer take up the full dynamic range of th ADC (analog to digital converter).
If Separate is chosen then the screen is divided into the same number of grids that
there are waveforms (for example, if three waveforms are displayed then the screen
will be divided into three grids). Each grid represents the full dynamic range of the
ADC so this choice maximizes measurement accuracy while still separating the
waveforms so they are easy to see. If the Overlay option is chosen then the waveforms
are displayed on top of each other. This maximizes measurement accuracy, but can
making viewing difficult.

Example This example automatically overlays the waveforms after an autoscale.
10 OUTPUT 707;":AUTOSCALE:OVERlay ON"
20 END

Query :AUToscale:PLACement?

25-10

Root Level Commands
AUToscale:VERTical

AUToscale:VERTical

Command :AUToscale:VERTical {CHANnel<N>}

The :AUToscale:VERTical command autoscales the vertical position and scaling for
the corresponding channel without changing anything else (for example, trigger or
timebase settings).

Example This example automatically autoscales the vertical position and scale for the
waveform on Channel 1.
10 OUTPUT 707;":AUTOSCALE:VERTical CHAN1"
20 END

NOTE

If you are using software 2.10 or earlier, the command syntax is (lower-case “t” in
“vertical”):

AUToscale:VERtical <CHANnel 1 | CHANnel 2 | CHANnel 3 | CHANnel 4>

25-11

Root Level Commands
BEEP

BEEP

Command :BEEP <frequency>,<duration>

The :BEEP command makes the oscilloscope beep at a defined frequency and
duration.

<frequency> A real number representing frequency of beep in Hertz.

<duration> A real number representing duration of beep in milliseconds.

Example This example will create a beep at 1000 Hz for 500 ms.
10 OUTPUT 707;":BEEP 1000,500"
20 END

25-12

Root Level Commands
BLANk

BLANk

Command :BLANk {CHANnel<N> | BUS<N> | DIFFerential<P> |
COMMonmode<P> | DIGital<M> | FUNCtion<N> | HISTogram
| WMEMory<N> | CLOCk | MTRend | MSPectrum | EQUalize
| POD<P> | ALL}

The :BLANk command turns off an active channel, function, histogram, waveform
memory, measurement trend, measurement spectrum, or Feed-Forward Equalized
waveform. The :VIEW command turns them on.

<N> An integer, 1 - 4.

<P> An integer, 1 - 2.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).

<M> An integer, 0- 15.

Example This example turns off channel 1.
10 OUTPUT 707;":BLANK CHANNEL1"
20 END

25-13

Root Level Commands
CDISplay

CDISplay

Command :CDISplay

The :CDISplay command clears the display and resets all associated measurements.
If the oscilloscope is stopped, all currently displayed data is erased. If the oscilloscope
is running, all of the data in active channels and functions is erased; however, new
data is displayed on the next acquisition. Waveform memories are not erased.

Example This example clears the oscilloscope display.
10 OUTPUT 707;":CDISPLAY"
20 END

25-14

Root Level Commands
DIGitize

DIGitize

Command :DIGitize [CHANnel<N> | DIGital<M> | COMMonmode<P>
| DIFFerential<P> | POD<P>][,...]

<N> An integer, 1 - 4.

<M> An integer, 0 - 15.

<P> An integer, 1 - 2.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).

The :DIGitize command invokes a special mode of data acquisition that is more
efficient than using the :RUN command. This command initializes the selected
channels or functions, then acquires them according to the current oscilloscope
settings. When all waveforms are completely acquired, the oscilloscope is stopped.
The waveform completion criteria is set with the “:ACQuire:COMPlete” command.
If you specify channel or function parameters, then these are the only waveforms
acquired and the display waveforms of the specified channels and functions are turned
off.

If you use the :DIGitize command with no parameters, the digitize operation is
performed on the channels that are being displayed in the Infiniium waveform viewing
area. In this case, the display state of the acquired waveforms is not changed after
the :DIGitize command is completed. Because the command executes more quickly
without parameters, this form of the command is useful for repetitive measurement
sequences. You can also use this mode if you want to view the digitize results because
the display state of the digitized waveforms is not affected.
See the Sample Programs in chapter 6 for examples of how to use :DIGitize and its
related commands.

Full Range of Measurement and Math Operators are Available

Even though digitized waveforms are not displayed, you may perform the full
range of measurement and math operators on them.

25-15

Root Level Commands
DIGitize

Example This example acquires data on channel 1.
10 OUTPUT 707;":DIGITIZE CHANNEL1"
20 END

The ACQuire subsystem commands set up conditions such as COUNt for the next
:DIGitize command. The WAVeform subsystem commands determine how the data
is transferred out of the oscilloscope, and how to interpret the data.

25-16

Root Level Commands
DISable DIGital

DISable DIGital

Command :DISable DIGital

The :DISable DIGital command disables the digital channels 0-15.

Example This example will disable the digital channels.
10 OUTPUT 707;":DISable DIGital"
20 END

25-17

Root Level Commands
ENABle DIGital

ENABle DIGital

Command :ENABle DIGital

The :ENABle DIGital command enables the digital channels 0-15.

Example This example will enable the digital channels.
10 OUTPUT 707;":ENABle DIGital"
20 END

25-18

Root Level Commands
MTEE

MTEE

Command :MTEE <enable_mask>

The :MTEE command is used to set bits in the Mask Test Enable Register. This
register enables the following bits of the Mask Test Event Register:

<enable_mask> Bit 0 - Mask Test Complete
Bit 1 - Mask Test Fail
Bit 2 - Mask Low Amplitude
Bit 3 - Mask High Amplitude
Bit 4 - Mask Align Complete
Bit 5 - Mask Align Fail
Bit 6-7 are not used and are set to zero (0).

Query :MTEE?

The :MTEE? query returns the value stored in the Mask Test Enable Register.

Returned Format [:MTEE] <enable_mask>

Example Suppose your application requires an interrupt whenever a Mask Test Fail occurs in
the mask test register. You can enable this bit to generate the summary bit by sending:
OUTPUT 707;”MTEE 2”

Whenever an error occurs, the oscilloscope sets the MASK bit in the Operation Status
Register. Because the bits in the Operation Status Enable Register are all enabled, a
summary bit is generated to set bit 7 (OPER) in the Status Byte Register.
If bit 7 (OPER) in the Status Byte Register is enabled (via the *SRE command), a
service request interrupt (SRQ) is sent to the external computer.

25-19

Root Level Commands
MTER?

MTER?

Query :MTER?

The :MTER? query returns the value stored in the Mask Test Event Register. The bits
stored in the register have the following meanings:

The Mask Test Event Register is read and cleared by the MTER? query. The register
output is enabled or disabled using the mask value supplied with the MTEE command.

Returned Format 0-63 decimal value.

Bit 0 Mask Test Complete bit is set whenever the mask test is complete.
Bit 1 Mask Test Fail bit is set whenever the mask test failed.
Bit 2 Mask Low Amplitude bit is set whenever the signal is below the mask

amplitude.
Bit 3 Mask High Amplitude bit is set whenever the signal is above the mask

amplitude.
Bit 4 Mask Align Complete bit is set whenever the mask align is complete.
Bit 5 Mask Align Fail bit is set whenever the mask align failed.

Disabled Mask Test Event Register Bits Respond, but Do Not Generate a
Summary Bit

Mask Test Event Register bits that are not enabled still respond to their
corresponding conditions (that is, they are set if the corresponding event
occurs). However, because they are not enabled, they do not generate a
summary bit in the Operation Status Register.

25-20

Root Level Commands
MODel?

MODel?

Query :MODel?

The :MODel? query returns the model number for the oscilloscope.

Returned Format A six-character alphanumeric model number in quotation marks. Output is
determined by header and longform status as in Table 0-1.

Table 0-1 MODel? Returned Format

Example This example places the model number in a string variable, Model$, then prints the
contents of the variable on the computer's screen.

10 Dim Model$[13]!Dimension variable
20 OUTPUT 707;":MODEL?"
30 ENTER 707; Model$
40 PRINT MODEL$
50 END

HEADER LONGFORM RESPONSE

ON OFF ON OFF

X X 5485xA

X X 5485xA

X X :MOD 5485xA

X X :MODEL 5485xA

Where “x” in the Response 5485xA = 3, 4, or 5

25-21

Root Level Commands
OPEE

OPEE

Command :OPEE <mask>

<mask> The decimal weight of the enabled bits.
The :OPEE command sets a mask in the Operation Status Enable register. Each bit
that is set to a “1” enables that bit to set bit 7 in the status byte register, and potentially
causes an SRQ to be generated. Bit 5, Wait for Trig is used. Other bits are reserved.

Query :OPEE?

The query returns the current value contained in the Operation Status Enable register
as a decimal number.

Returned Format [OPEE] <value><NL>

25-22

Root Level Commands
OPER?

OPER?

Query :OPER?

The :OPER? query returns the value contained in the Operation Status Register as a
decimal number. This register contains the WAIT TRIG bit (bit 5) and the OVLR bit
(bit 11).
The WAIT TRIG bit is set by the Trigger Armed Event Register and indicates that the
trigger is armed. The OVLR bit is set by the Overload Event Register.

Returned Format <value><NL>

25-23

Root Level Commands
OVLRegister?

OVLRegister?

Query :OVLRegister?

The :OVLRegister? query returns the value stored in the Overload Event Register.
The integer value returned by this query represents the channels as follows:

Bit 0 - Channel 1
Bit 1 - Channel 2
Bit 2 - Channel 3
Bit 3 - Channel 4
Bits 7-4 are not used and are set to zero (0).

Returned Format <value><NL>

25-24

Root Level Commands
PDER? (Processing Done Event Register)

PDER? (Processing Done Event Register)

Query :PDER?

The :PDER? query reads the Processing Done Event Register and returns 1 or 0. After
the Processing Done Event Register is read, the register is cleared. The returned value
1 indicates indicates that all math and measurements are complete and 0 indicates
they are not complete. :PDER? is non-blocking.
:PDER? can be used in place of :ADER?.

Returned Format {1 | 0}<NL>

25-25

Root Level Commands
PRINt

PRINt

Command :PRINt

The :PRINt command outputs a copy of the screen to a printer or other device
destination specified in the HARDcopy subsystem. You can specify the selection of
the output and the printer using the HARDcopy subsystem commands.

Example This example outputs a copy of the screen to a printer or a disk file.

10 OUTPUT 707;":PRINT"
20 END

25-26

Root Level Commands
RECall:SETup

RECall:SETup

Command :RECall:SETup <setup_memory_num>

<setup
_memory_num>

Setup memory number, an integer, 0 through 9.
The :RECall:SETup command recalls a setup that was saved in one of the
oscilloscope’s setup memories. You can save setups using either the :STORe:SETup
command or the front panel.

Examples This command recalls a setup from setup memory 2.

10 OUTPUT 707;":RECall:SETup 2"
20 END

25-27

Root Level Commands
RUN

RUN

Command :RUN

The :RUN command starts the oscilloscope running. When the oscilloscope is
running, it acquires waveform data according to its current settings. Acquisition runs
repetitively until the oscilloscope receives a :STOP command, or until there is only
one acquisition if Trigger Sweep is set to Single. However, the :TRIGger:SWEep
SINGle should not be used in new programs. The :SINGle command should be used
instead to acquire a single acquisition.

Example This example causes the oscilloscope to acquire data repetitively.

10 OUTPUT 707;":RUN"
20 END

25-28

Root Level Commands
SERial (Serial Number)

SERial (Serial Number)

Command :SERial {<serial_number>}

The :SERial command sets the serial number of the oscilloscope. A serial number
was entered in your oscilloscope by Agilent Technologies before it was shipped to
you. Therefore, setting the serial number is not normally required unless the
oscilloscope is serialized for a different application.
The oscilloscope’s serial number is part of the string returned for the *IDN? query
described in the Common Commands chapter.

<serial
_number>

A ten-character alphanumeric serial number enclosed with quotation marks.

Example This example sets the serial number for the oscilloscope to “US12345678”.

10 OUTPUT 707;":SERIAL ""US12345678"""
20 END

Query :SERial?

The query returns the current serial number string for the oscilloscope.

Returned Format [:SERial] US12345678

Example This example places the serial number for the oscilloscope in the string variable
Serial?, then prints the contents of the variable to the computer’s screen.
10 Dim Serial$[50]!Dimension variable
20 OUTPUT 707;":SERIAL?"
30 ENTER 707; Serial$
40 PRINT SERIAL$
50 END

25-29

Root Level Commands
SINGle

SINGle

Command :SINGle

The :SINGle command causes the oscilloscope to make a single acquisition when the
next trigger event occurs. However, this command does not set the :TRIGger:SWEep
to SINGle.

Example This example sets up the oscilloscope to make a single acquisition when the next
trigger event occurs.

10 OUTPUT 707;":SINGLE"
20 END

See Also :TRIGger:SWEep AUTO|TRIGgered|SINGle for how to turn the single sweep off.

25-30

STATus?

Query :STATus? {CHANnel<N> | COMMonmode<P> |
DIFFerential<P> | FUNCtion<N> | HISTogram |
WMEMory<N> | CLOCk | MTRend | MSPectrum | EQUalized
| BUS<N> | POD<L>}

The :STATus? query shows whether the specified channel, function, wmemory,
histogram, measurement trend, measurement spectrum, or equalized waveform is on
or off. A return value of 1 means on and a return value of 0 means off.

MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).
POD<L> refers to the two digital channel pods - one that includes all of the activated
digital channels in the D0-D7 range and the other that includes all of the activated
digital channels in the D8-D15 range.

<N> CHANnel<N> is an integer, 1 - 4.
BUS<N> is an integer, 1-4
FUNCtion<N> and WMEMory<N> are:

An integer, 1 - 4, representing the selected function or waveform memory.

<P> An integer, 1 - 2.

Returned Format [:STATus] {0 | 1}<NL>

25-31

Root Level Commands
STATus?

Example This example returns and prints the current status of channel 1.
10 OUTPUT 707;":STATUS? CHANNEL1"
30 ENTER 707;Current$
40 PRINT Current$
50 END

25-32

Root Level Commands
STOP

STOP

Command :STOP

The :STOP command causes the oscilloscope to stop acquiring data. To restart the
acquisition, use the :RUN or :SINGle command.

Example This example stops the current data acquisition.

10 OUTPUT 707;":STOP"
20 END

25-33

Root Level Commands
STORe:JITTer

STORe:JITTer

Command :STORe:JITTer <file_name>

The :STORe:JITTer command saves all of the RJ/DJ jitter measurement data to the
specified file name. The file that is created has a header section followed by the RJ/
DJ measurement results section. After the RJ/DJ measurement results section is the
data for each of the measurements. Each data section has a header showing what the
measurement data is that follows.

<file_name> A character-quoted ASCII string which can include subdirectories with the name of
the file.

Example This example stores the RJ/DJ jitter measurements to a file.
10 OUTPUT 707;":STORE:JITTer “c:\Document and Settings\All
Users\Shared Documents\Infiniium\Data\jitter”"
20 END

25-34

Root Level Commands
STORe:SETup

STORe:SETup

Command :STORe:SETup <setup_memory_num>

<setup
_memory_num>

Setup memory number, an integer, 0 through 9.
The :STORe:SETup command saves the current oscilloscope setup in one of the setup
memories.

Example This example stores the current oscilloscope setup to setup memory 0.
10 OUTPUT 707;":STORE:SETUP 0"
20 END

25-35

Root Level Commands
STORe:WAVeform

STORe:WAVeform

Command :STORe:WAVeform {{CHANnel<N> | COMMonmode<P> |
DIFFerential<P> | FUNCtion<N> | WMEMory<N> | MTRend
| MSPectrum},{WMEMory<N>}}

MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.

<N> An integer, 1 - 4.

<P> An integer, 1 - 2.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).

The :STORe:WAVeform command copies a channel, function, stored waveform,
measurement trend, or measurement spectrum to a waveform memory. The parameter
preceding the comma specifies the source and can be any channel, function, or
waveform memory. The parameter following the comma is the destination, and can
be any waveform memory.
The :WAVeform:VIEW command determines the view of the data being stored.

Example This example copies channel 1 to waveform memory 3.
10 OUTPUT 707;":STORE:WAVEFORM CHANNEL1,WMEMORY3"
20 END

25-36

Root Level Commands
TER? (Trigger Event Register)

TER? (Trigger Event Register)

Query :TER?

The :TER? query reads the Trigger Event Register. A “1” is returned if a trigger has
occurred. A “0” is returned if a trigger has not occurred. The autotrigger does not
set this register. The register is set to a value of 1 only when the waveform meets the
trigger criteria.

Returned Format {1 | 0}<NL>

Example This example checks the current status of the Trigger Event Register, places the status
in the string variable, Current$, then prints the contents of the variable to the
computer's screen.
10 DIM Current$[50]!Dimension variable
20 OUTPUT 707;":TER?"
30 ENTER 707;Current$
40 PRINT Current$
50 END

Once this bit is set, you can clear it only by reading the register with the :TER? query,
or by sending a *CLS common command. After the Trigger Event Register is read,
it is cleared.

25-37

Root Level Commands
VIEW

VIEW

Command :VIEW {CHANnel<N> | COMMonmode<P> | DIFFerential<P>
| FUNCtion<N> | BUS<N> | DIGital<M> | HISTogram |
WMEMory<N> | MSTrend | MSPectrum | POD<P>}

The :VIEW command turns on a channel, function, histogram, or waveform memory.
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.

<N> An integer, 1 - 4.

<M> An integer, 0- 15.

<P> An integer, 1 - 2.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).

Example This example turns on channel 1.
10 OUTPUT 707;":VIEW CHANNEL1"
20 END

See Also The :BLANk command turns off a channel, function, histogram, or waveform
memory.

25-38

Root Level Commands
VIEW

26

Self-Test Commands

26-2

Self-Test Commands

The SELFtest subsystem commands set up the self-test dialog and run the
Infiniium-Series Oscilloscopes Self-Tests.

These SELFtest commands and queries are implemented in the Infiniium
Oscilloscopes:

• CANCel
• SCOPETEST

Enclose File Name in Quotation Marks

When specifying a file name, you must enclose it in quotation marks.

26-3

Self-Test Commands
CANCel

CANCel

Command :SELFtest:CANCel

The :SELFtest:CANCel command stops the currently running selftest.

Example This example stops the currently running selftest.
10 OUTPUT 707;":SELF:CANC"
20 END

26-4

Self-Test Commands
SCOPETEST

SCOPETEST

Command :SELFtest:SCOPETEST

The :SELFtest:SCOPETEST command brings up the self-test dialog in customer self-
test mode (Service Extensions Off) and runs the test, “Scope Self Tests.” Use the
:SELFtest:SCOPETEST? query to determine the status of the test.

Example This example brings up the self-test dialog and runs the oscilloscope self-tests.
10 OUTPUT 707;":SELF:SCOPETEST"
20 END

Query :SELFtest:SCOPETEST?

Returned Format [:SELFtest:SCOPETEST] <test_name>,<test_status>,
<time_stamp><NL>

<test_name> A string as follows: “Scope Self Tests”.

<time_stamp> The time stamp follows the test name and test status, and is the part of the returned
string that includes the date and time, in the format:
“20 May 2009 10:13:35”.

Example This example places the current status of the self-test in the string variable, Txt$, then
prints the contents of the variable to the computer's screen.
10 DIM Txt$[64]
20 OUTPUT 707;":SELF:SCOPETEST?"
30 ENTER 707;Txt$
40 PRINT Txt$
50 END

<test_status> Status Description
FAILED Test completed and failed.
PASSED Test completed and passed.
WARNING Test passed but warning message was issued.
CANCELLED Test was cancelled by user.
NODATA Self-tests have not been executed on this instrument.
INPROGRESS Test is in progress.

27

System Commands

27-2

System Commands

SYSTem subsystem commands control the way query responses are
formatted, send and receive setup strings, and enable reading and writing to
the advisory line of the oscilloscope. You can also set and read the date and
time in the oscilloscope using the SYSTem subsystem commands.

These SYSTem commands and queries are implemented in the Infiniium
Oscilloscopes:

• DATE
• DEBug
• DSP
• ERRor?
• HEADer
• LOCK
• LONGform
• PRESet
• SETup
• TIME

27-3

System Commands
DATE

DATE

Command :SYSTem:DATE <day>,<month>,<year>

The :SYSTem:DATE command sets the date in the oscilloscope, and is not affected
by the *RST common command.

<year> Specifies the year in the format <yyyy> | <yy>. The values range from 1992 to 2035.

<month> Specifies the month in the format <1, 2, . . . 12> | <JAN, FEB, MAR . . .>.

<day> Specifies the day in the format <1 . . . 31>.

Example This example sets the date to December 1, 2002.
10 OUTPUT 707;":SYSTEM:DATE 1,12,02"
20 END

Query :SYSTem:DATE?

The :SYSTem:DATE? query returns the current date in the oscilloscope.

Returned Format [:SYSTem:DATE] <day> <month> <year><NL>

Example This example queries the date.
10 DIM Date$ [50]
20 OUTPUT 707;":SYSTEM:DATE?"
30 ENTER 707; Date$
40 PRINT Date$

27-4

System Commands
DEBug

DEBug

Command :SYSTem:DEBug {{ON|1}[,<output_mode>[,"<file_name>"
[,<create_mode>]]] | {OFF|0}}

The :SYSTem:DEBug command turns the debug m ode on and off. This mode enables
the tracing of incoming GPIB commands. If you select CREate mode, a new file is
created, and/or an existing file is overwritten. If you select APPend mode, the
information is appended to an existing file. The :SYSTem:DEBug command shows
any header and/or parameter errors.
The default create mode is CREate, the default output mode is FileSCReen, and the
default file name is c:\Document and Settings\All Users\Shared
Documents\Infiniium\Data\debug.txt. In debug mode, the File View button lets you
view the current debug file, or any other debug file. This is a read-only mode.

<output_mode> {FILE | SCReen | FileSCReen}

<file_name> An MS-DOS compatible name of the file, a maximum of 254 characters long
(including the path name, if used). The file name assumes the present working
directory if a path does not precede the file name.

<create_mode> {CREate | APPend}

Examples This example turns on the debug/trace mode and creates a debug file.
10 OUTPUT 707;":SYSTEM:DEBUG ON,FILE,

"C:\Document and Settings\All Users\Shared
Documents\Infiniium\Data\pacq8xx.txt",CREATE"
20 END

The created file resembles:
Debug information file C:\Document and Settings\All Users\Shared
Documents\Infiniium\Data\pacq8xx.txt
Date: 1 DEC 2002
Time: 09:59:35
Model: 54853A
Serial#: sn ?
>:syst:err? string$<NL>
<:SYSTEM:ERROR 0,"No error"$
>:ACQuire:BEST FLATness$<NL>
? ^
?-113, Undefined header
>:syst:err? string$<NL>
<:SYSTEM:ERROR -113,"Undefined header"$
>:syst:err? string$<NL>
<:SYSTEM:ERROR 0,"No error"$

27-5

System Commands
DEBug

This example appends information to the debug file.
10 OUTPUT 707;":SYSTEM:DEBUG ON,FILE,

"C:\Document and Settings\All Users\Shared
Documents\Infiniium\Data\pacq8xx.txt",APPEND"
20 END

After appending information, the file resembles:
Debug information file C:\Document and Settings\All Users\Shared
Documents\Infiniium\Data\pacq8xx.txt
Date: 1 DEC 2002
Time: 09:59:35
Model: 54853A
Serial#: sn ?
>:syst:err? string$<NL>
<:SYSTEM:ERROR 0,"No error"$
>:ACQuire:BEST FLATness$<NL>
? ^
?-113, Undefined header
>:syst:err? string$<NL>
<:SYSTEM:ERROR -113,"Undefined header"$
>:syst:err? string$<NL>
<:SYSTEM:ERROR 0,"No error"$

Debug information file C:\Document and Settings\All Users\Shared
Documents\Infiniium\Data\pacq8xx.txt appended
Date: 1 DEC 2002
Time: 10:10:35
Model: 54853A
Serial#: sn ?
>:syst:err? string$<NL>
<:SYSTEM:ERROR 0,"No error"$
>:ACQuire:BEST FLATness$<NL>
? ^
?-113, Undefined header
>:syst:err? string$<NL>
<:SYSTEM:ERROR -113,"Undefined header"$

Query :SYSTem:DEBug?

The :SYSTem:DEBug? query returns the current debug mode settings.

Returned Format [:SYSTem:DEBug] {{1,<output_mode>,"<file_name>",
<create_mode>} | 0} <NL>

27-6

System Commands
DSP

DSP

Command :SYSTem:DSP "<string>"

The :SYSTem:DSP command writes a quoted string, excluding quotation marks, to
the advisory line of the instrument display. If you want to clear a message on the
advisory line, send a null (empty) string.

<string> An alphanumeric character array up to 86 bytes long.

Example This example writes the message, “Test 1” to the advisory line of the oscilloscope.
10 OUTPUT 707;":SYSTEM:DSP ""Test 1"""
20 END

Query :SYSTem:DSP?

The :SYSTem:DSP? query returns the last string written to the advisory line. This
may be a string written with a :SYSTem:DSP command, or an internally generated
advisory.
The string is actually read from the message queue. The message queue is cleared
when it is read. Therefore, the displayed message can only be read once over the bus.

Returned Format [:SYSTem:DSP] <string><NL>

Example This example places the last string written to the advisory line of the oscilloscope in
the string variable, Advisory$. Then, it prints the contents of the variable to the
computer's screen.
10 DIM Advisory$[89]!Dimension variable
20 OUTPUT 707;":SYSTEM:DSP?"
30 ENTER 707;Advisory$
40 PRINT Advisory$
50 END

27-7

System Commands
ERRor?

ERRor?

Query :SYSTem:ERRor? [{NUMBer | STRing}]

The :SYSTem:ERRor? query outputs the next error number in the error queue over
the GPIB. When either NUMBer or no parameter is specified in the query, only the
numeric error code is output. When STRing is specified, the error number is output
followed by a comma and a quoted string describing the error. Table 0-6 lists the error
numbers and their corresponding error messages.

Returned Format [:SYSTem:ERRor] <error_number>[,<quoted_string>]<NL>

<error_number> A numeric error code.

<quoted_string> A quoted string describing the error.

Example This example reads the oldest error number and message in the error queue into the
string variable, Condition$, then prints the contents of the variable to the computer's
screen.
10 DIM Condition$[64]!Dimension variable
20 OUTPUT 707;":SYSTEM:ERROR? STRING"
30 ENTER 707;Condition$
40 PRINT Condition$
50 END

Infiniium Oscilloscopes have an error queue that is 30 errors deep and operates on a
first-in, first-out (FIFO) basis. Successively sending the :SYSTem:ERRor? query
returns the error numbers in the order that they occurred until the queue is empty.
When the queue is empty, this query returns headers of 0, “No error.” Any further
queries return zeros until another error occurs. Note that front-panel generated errors
are also inserted in the error queue and the Event Status Register.

See Also The “Error Messages” chapter for more information on error messages and their
possible causes.

Send *CLS Before Other Commands or Queries

Send the *CLS common command to clear the error queue and Event Status
Register before you send any other commands or queries.

27-8

System Commands
HEADer

HEADer

Command :SYSTem:HEADer {{ON|1} | {OFF|0}}

The :SYSTem:HEADer command specifies whether the instrument will output a
header for query responses. When :SYSTem:HEADer is set to ON, the query
responses include the command header.

Example This example sets up the oscilloscope to output command headers with query
responses.
10 OUTPUT 707;":SYSTEM:HEADER ON"
20 END

Query :SYSTem:HEADer?

The :SYSTem:HEADer? query returns the state of the :SYSTem:HEADer command.

Returned Format [:SYSTem:HEADer] {1|0}<NL>

27-9

System Commands
HEADer

Example This example examines the header to determine the size of the learn string. Memory
is then allocated to hold the learn string before reading it. To output the learn string,
the header is sent, then the learn string and the EOF.
10 DIM Header$[64]
20 OUTPUT 707;"syst:head on"
30 OUTPUT 707;":syst:set?"
40 More_chars: !
50 ENTER 707 USING "#,A";This_char$
60 Header$=Header$&This_char$
70 IF This_char$<>"#" THEN More_chars
80 !
90 ENTER 707 USING "#,D";Num_of_digits
100 ENTER 707 USING "#,"&VAL$(Num_of_digits)&"D";Set_size
110 Header$=Header$&"#"&VAL$(Num_of_digits)&VAL$(Set_size)
120 !
130 ALLOCATE INTEGER Setup(1:Set_size)
140 ENTER 707 USING "#,B";Setup(*)
150 ENTER 707 USING "#,A";Eof$
160 !
170 OUTPUT 707 USING "#,-K";Header$
180 OUTPUT 707 USING "#,B";Setup(*)
190 OUTPUT 707 USING "#,A";Eof$
200 END

Turn Headers Off when Returning Values to Numeric Variables

Turn headers off when returning values to numeric variables. Headers are
always off for all common command queries because headers are not defined
in the IEEE 488.2 standard.

27-10

System Commands
LOCK

LOCK

Command :SYSTem:LOCK {{ON | 1} | {OFF | 0}}

The :SYSTem:LOCK ON command disables the front panel. The front panel can be
re-enabled by sending the :SYSTem:LOCK OFF command or by using the mouse to
click on the Minimize button in the upper right-hand corner of the oscilloscope screen.

Example This example disables the oscilloscope’s front panel.
10 OUTPUT 707;":SYSTEM:LOCK ON"
20 END

Query :SYSTem:LOCK?

The :SYSTem:LOCK? query returns the state of the :SYSTem:LOCK command.

Returned Format [:SYSTem:LOCK] {1 | 0}<NL>

27-11

System Commands
LONGform

LONGform

Command :SYSTem:LONGform {{ON | 1} | {OFF | 0}}

The :SYSTem:LONGform command specifies the format for query responses. If the
LONGform is set to OFF, command headers and alpha arguments are sent from the
oscilloscope in the short form (abbreviated spelling). If LONGform is set to ON, the
whole word is output.

Example This example sets the format for query responses from the oscilloscope to the short
form (abbreviated spelling).
10 OUTPUT 707;":SYSTEM:LONGFORM OFF"
20 END

Query :SYSTem:LONGform?

The :SYSTem:LONGform? query returns the current state of the
:SYSTem:LONGform command.

Returned Format [:SYSTem:LONGform] {1 | 0}<NL>

27-12

System Commands
LONGform

Example This example checks the current format for query responses from the oscilloscope,
and places the result in the string variable, Result$. Then, it prints the contents of the
variable to the computer's screen.
10 DIM Result$[50]!Dimension variable
20 OUTPUT 707;":SYSTEM:LONGFORM?"
30 ENTER 707;Result$
40 PRINT Result$
50 END

LONGform Does Not Affect Input Headers and Arguments

LONGform has no effect on input headers and arguments sent to the
instrument. You may send headers and arguments to the oscilloscope in either
the long form or short form, regardless of the current state of the
:SYSTem:LONGform command.

27-13

System Commands
PRESet

PRESet

Command :SYSTem:PRESet [{DEFault|FACtory}]

The :SYSTem:PRESet command performs a Default Setup just like the oscilloscope’s
Default Setup key. Using this command does not change any of the control settings
found in the User Preferences dialog box, display color settings, screen options, probe
skew, probe external adapter settings for differential probes, or probe internal
attenuation and gain settings for differential probes. The parameters are optional. A
default reset will occur if no parameters are used or the DEFault parameter is used.
A factory default occurs with the FACtory parameter.

Example This example performs an oscilloscope default setup.
10 OUTPUT 707;":SYSTEM:PRESet"
20 END

27-14

System Commands
SETup

SETup

Command :SYSTem:SETup <binary_block_data>

The :SYSTem:SETup command sets up the oscilloscope as defined by the data in the
binary block of data from the computer.

<binary
_block_data>

A binary block of data, consisting of bytes of setup information. The number of bytes
is a dynamic number that is read and allocated by oscilloscope’s software.

Example This example sets up the instrument as defined by the setup data stored in the variable,
Set$.
10 OUTPUT 707 USING "#,-K";":SYSTEM:SETUP ";Set$
20 END

Query :SYSTem:SETup?

The :SYSTem:SETup? query outputs the oscilloscope's current setup to the computer
in binary block data format as defined in the IEEE 488.2 standard.

Returned Format [:SYSTem:SETup] #NX...X<setup_data_string><NL>

The first character in the setup data block is a number added for disk operations.

27-15

System Commands
SETup

Example This example stores the current oscilloscope setup in the string variable, Set$.
10 DIM Set$[15000]!Dimension variable
20 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
30 OUTPUT 707;":SYSTEM:SETUP?"
40 ENTER 707 USING "-K";Set$
50 END

HP BASIC Image Specifiers

−K is an HP BASIC image specifier which places the block data in a string,
including carriage returns and line feeds, until EOI is true, or the dimensioned
length of the string is reached.

:SYSTem:SETup Can Operate Just Like *LRN?

When headers and LONGform are on, the :SYSTem:SETup? query operates
the
same as the *LRN? query in the common commands. Otherwise, *LRN? and
:SYSTem:SETup are not interchangeable.

27-16

System Commands
TIME

TIME

Command :SYSTem:TIME <hour>,<minute>,<second>

The :SYSTem:TIME command sets the time in the oscilloscope and is not affected
by the *RST common command.

<hour> 0...23

<minute> 0...59

<second> 0...59

Example This example sets the oscilloscope time to 10:30:45 a.m.
10 OUTPUT 707;":SYSTEM:TIME 10,30,45"
20 END

Query :SYSTem:TIME?

The :SYSTem:TIME? query returns the current time in the oscilloscope.

Returned Format [:SYSTem:TIME] <hour>,<minute>,<second>

28

Time Base Commands

28-2

Time Base Commands

The TIMebase subsystem commands control the horizontal (X axis)
oscilloscope functions. These TIMebase commands and queries are
implemented in the Infiniium Oscilloscopes:

• POSition
• RANGe
• REFClock
• REFerence
• ROLL:ENABle
• SCALe
• VIEW
• WINDow:DELay
• WINDow:POSition
• WINDow:RANGe
• WINDow:SCALe

28-3

Time Base Commands
POSition

POSition

Command :TIMebase:POSition <position_value>

The :TIMebase:POSition command sets the time interval between the trigger event
and the delay reference point. The delay reference point is set with the
:TIMebase:REFerence command.

<position
_value>

A real number for the time in seconds from trigger to the delay reference point.

Example This example sets the delay position to 2 ms.
10 OUTPUT 707;":TIMEBASE:POSITION 2E-3"
20 END

Query :TIMebase:POSition?

The :TIMebase:POSition? query returns the current delay value in seconds.

Returned Format [:TIMebase:POSition] <position_value><NL>

Example This example places the current delay value in the numeric variable, Value, then prints
the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":TIMEBASE:POSITION?"
30 ENTER 707;Value
40 PRINT Value
50 END

28-4

Time Base Commands
RANGe

RANGe

Command :TIMebase:RANGe <full_scale_range>

The :TIMebase:RANGe command sets the full-scale horizontal time in seconds. The
range value is ten times the time-per-division value.

<full_scale
_range>

A real number for the horizontal time, in seconds.
The timebase range is 50 ps (5 ps/div) to 200 s (20 s/div).

Example This example sets the full-scale horizontal range to 10 ms.
10 OUTPUT 707;":TIMEBASE:RANGE 10E-3"
20 END

Query :TIMebase:RANGe?

The :TIMebase:RANGe? query returns the current full-scale horizontal time.

Returned Format [:TIMebase:RANGe] <full_scale_range><NL>

Example This example places the current full-scale horizontal range value in the numeric
variable, Setting, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":TIMEBASE:RANGE?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

28-5

Time Base Commands
REFClock

REFClock

Command :TIMebase:REFClock {{ON | 1} | {OFF | 0}}

The :TIMebase:REFClock command enables or disables the 10 MHz REF IN BNC
input located on the rear panel of the oscilloscope. The 10 MHz reference input is
used as a reference clock for the oscilloscope for the horizontal scale section instead
of the internal 10 MHz reference when this feature is enabled.

Example This example turns on the 10 MHz reference mode.
10 OUTPUT 707;":TIMEBASE:REFCLOCK ON"
20 END

Query :TIMebase:REFClock?

The :TIMebase:REFClock? query returns the current state of the 10 MHz reference
mode control.

Returned Format [TIMEBASE:REFCLOCK] {1 | 0}<NL>

Example This example places the current value of the 10 MHz reference mode control in the
variable, Setting, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":TIMEBASE:REFCLOCK?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

28-6

Time Base Commands
REFerence

REFerence

Command :TIMebase:REFerence {LEFT | CENTer | RIGHt}

The :TIMebase:REFerence command sets the delay reference to the left, center, or
right side of the display.

Example This example sets the delay reference to the center of the display.
10 OUTPUT 707;":TIMEBASE:REFERENCE CENTER"
20 END

Query :TIMebase:REFerence?

The :TIMebase:REFerence? query returns the current delay reference position.

Returned Format [:TIMebase:REFerence] {LEFT | CENTer | RIGHt}<NL>

Example This example places the current delay reference position in the string variable,
Setting$, then prints the contents of the variable to the computer's screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":TIMEBASE:REFERENCE?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

28-7

Time Base Commands
ROLL:ENABLE

ROLL:ENABLE

Command :TIMebase:ROLL:ENABLE {{ON | 1} | {OFF | 0}}

The :TIMebase:ROLL:ENABLE command enables or disables the roll mode feature.

Example This example tuns on the roll mode.
10 OUTPUT 707;":TIMEBASE:ROLL:ENABLE ON"
20 END

Query :TIMebase:ROLL:ENABLE?

The :TIMebase:ROLL:ENABLE? query returns the current state of the roll mode
enable control.

Returned Format [:TIMebase:ROLL:ENABLE] {1 | 0}<NL>

Example This example places the current value of the roll mode enable control in the variable,
Setting, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":TIMEBASE:ROLL:ENABLE?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

28-8

Time Base Commands
SCALe

SCALe

Command :TIMebase:SCALe <time>

The :TIMebase:SCALe command sets the time base scale. This corresponds to the
horizontal scale value displayed as time/div on the oscilloscope screen.

<time> A real number for the time value, in seconds per division.
The timebase scale is 5 ps/div to 20 s/div.

Example This example sets the scale to 10 ms/div.
10 OUTPUT 707;":TIMEBASE:SCALE 10E-3"
20 END

Query :TIMebase:SCALe?

The :TIMebase:SCALe? query returns the current scale time setting.

Returned Format [:TIMebase:SCALe] <time><NL>

Example This example places the current scale value in the numeric variable, Setting, then
prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":TIMEBASE:SCALE?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

28-9

Time Base Commands
VIEW

VIEW

Command :TIMebase:VIEW {MAIN | WINDow}

The :TIMebase:VIEW command turns the delayed displayed view on and off. This
is the same as using the front panel Delayed button.

Example This example turns the delayed view on.
10 OUTPUT 707;":TIMEBASE:VIEW WINDOW"
20 END

Query :TIMebase:VIEW?

The :TIMebase:VIEW? query returns Infiniium’s current view.

Returned Format [:TIMebase:VIEW] {MAIN | WINDow}<NL>

Example This example places the current view in the string variable, State$, then prints the
contents of the variable to the computer's screen.
10 DIM State$[50]!Dimension variable
20 OUTPUT 707;":TIMEBASE:VIEW?"
30 ENTER 707;State$
40 PRINT State$
50 END

28-10

Time Base Commands
WINDow:DELay

WINDow:DELay

Command :TIMebase:WINDow:DELay <delay_value>

The :TIMebase:WINDow:DELay sets the horizontal position in the delayed view of
the main sweep. The range for this command is determined by the main sweep range
and the main sweep horizontal position. The value for this command must keep the
time base window within the main sweep range.

<delay_value> A real number for the time in seconds from the trigger event to the delay reference
point. The maximum position depends on the main sweep range and the main sweep
horizontal position.

Example This example sets the time base window delay position to 20 ns.
10 OUTPUT 707;":TIMEBASE:WINDOW:DELAY 20E-9"
20 END

This Command is Provided for Compatibility

This command is the same as the :TIMebase:WINDow:POSition command,
and is provided for compatibility with programs written for previous
oscilloscopes. The preferred command for compatibility with Infiniium
Oscilloscopes is :TIMebase:WINDow:POSition.

28-11

Time Base Commands
WINDow:DELay

Query :TIMebase:WINDow:DELay?

The :TIMebase:WINDow:DELay? query returns the current horizontal position in the
delayed view.

Returned Format [:TIMebase:WINDow:DELay] <delay_position><NL>

Example This example places the current horizontal position in the delayed view in the numeric
variable, Setting, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":TIMEBASE:WINDOW:DELAY?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

See Also The :TIMebase:WINDow:POSition command performs the same function as this
command and should be used in new programs.

28-12

Time Base Commands
WINDow:POSition

WINDow:POSition

Command :TIMebase:WINDow:POSition <position_value>

The :TIMebase:WINDow:POSition sets the horizontal position in the delayed view
of the main sweep. The range for this command is determined by the main sweep
range and the main sweep horizontal position. The value for this command must keep
the time base window within the main sweep range.

<position
_value>

A real number for the time in seconds from the trigger event to the delay reference
point. The maximum position depends on the main sweep range and the main sweep
horizontal position.

Example This example sets the time base window delay position to 20 ns.
10 OUTPUT 707;":TIMEBASE:WINDOW:POSITION 20E-9"
20 END

Query :TIMebase:WINDow:POSition?

The :TIMebase:WINDow:POSition? query returns the current horizontal position in
the delayed view.

Returned Format [:TIMebase:WINDow:POSition] <position_value><NL>

Example This example places the current horizontal position in the delayed view in the numeric
variable, Setting, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":TIMEBASE:WINDOW:POSITION?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

28-13

Time Base Commands
WINDow:RANGe

WINDow:RANGe

Command :TIMebase:WINDow:RANGe <full_scale_range>

The :TIMebase:WINDow:RANGe command sets the full-scale range of the delayed
view. The range value is ten times the time per division of the delayed view. The
maximum range of the delayed view is the current main range. The minimum delayed
view range is 10 ps (1 ps/div).

<full_scale
_range>

A real number for the full-scale range of the time base window, in seconds.

Example This example sets the full-scale range of the delayed view to 100 ns.
10 OUTPUT 707;":TIMEBASE:WINDOW:RANGE 100E-9"
20 END

Query :TIMebase:WINDow:RANGe?

The :TIMebase:WINDow:RANGe? query returns the current full-scale range of the
delayed view.

Returned Format [:TIMebase:WINDow:RANGe] <full_scale_range><NL>

Example This example reads the current full-scale range of the delayed view into the numeric
variable, Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":TIMEBASE:WINDOW:RANGE?"
30 ENTER 707;Value
40 PRINT Value
50 END

28-14

WINDow:SCALe

Command :TIMebase:WINDow:SCALe <time>

The :TIMebase:WINDow:SCALe command sets the time/div in the delayed view.
This command rescales the horizontal components of displayed waveforms.

<time> A real number for the delayed windows scale.

Example This example sets the scale of the time base window to
2 milliseconds/div.
10 OUTPUT 707;":TIMEBASE:WINDOW:SCALE 2E-3"
20 END

Query :TIMebase:WINDow:SCALe?

The :TIMebase:WINDow:SCALe? query returns the scaled window time, in seconds/
div.

Returned Format [:TIMebase:WINDow:SCALe] <time><NL>

28-15

Time Base Commands
WINDow:SCALe

28-16

Time Base Commands
WINDow:SCALe

29

Trigger Commands

29-2

Trigger Commands

The oscilloscope trigger circuitry helps you locate the waveform you want to
view. There are several different types of triggering, but the one that is used
most often is edge triggering. Edge triggering identifies a trigger condition
by looking for the slope (rising or falling) and voltage level (trigger level) on
the source you select. Any input channel, auxiliary input trigger,or line can
be used as the trigger source.

The commands in the TRIGger subsystem define the conditions for triggering.
Many of the commands in the TRIGger subsystem are used in more than one
of the trigger modes. The command set has been defined to closely represent
the front-panel trigger menus. As a trade-off, there may be less compatibility
between Infiniium Oscilloscopes and command sets for previous
oscilloscopes. Infiniium Oscilloscopes still accept some commands for
compatibility with previous instruments. An alternative command that is
accepted by the oscilloscope is noted for a particular command.

These TRIGger commands and queries are implemented in the Infiniium
Oscilloscopes:

• :AND:{ENABle | SOURce}
• :COMM:{BRIDth | ENCode | PATTern | POLarity | SOURce}
• :DELay:{ARM | EDELay | MODE | TDELay | TRIGger}
• :EDGe {:SLOPe | :SOURce | :COUPling}
• :GLITch {:POLarity | :SOURce | :WIDTh}
• :HOLDoff
• :HTHReshold
• :HYSTeresis
• :LEVel
• :LTHReshold
• :MODE
• :PATTern:{CONDition | LOGic}
• :PWIDth:{DIRection | POLarity | SOURce | TPOint | EXTend}
• :RUNT:{POLarity | QUALified | SOURce | TIME}
• :SHOLd:{CSOurce | DSOurce | HoldTIMe | MODE | SetupTIMe}
• :STATE:{CLOCk | LOGic | LTYPe | SLOPe}

29-3

• :SWEep
• :TIMeout:{CONDition | SOURce | TIME}
• :TRANsition:{DIRection | SOURce | TIME | TYPE}
• :TV:{MODE | SOURce | STANDard | UDTV}
• :WINDow:{CONDition | SOURce | TIME | TPOint}

• :ADVanced:MODE {DELay | PATTern | STATe | TV | VIOLation}
• :ADVanced:MODE COMM
• :ADVanced:COMM:{BWIDth | ENCode | LEVel | PATTern | POLarity |

SOURce}
• :ADVanced:MODE DELay
• :ADVanced:DELay
• :ADVanced:DELay:MODE {EDLY | TDLY}
• :ADVanced:MODE PATTern
• :ADVanced:PATTern {:CONDition | :LOGic | :THReshold}
• :ADVanced:MODE STATe
• :ADVanced:STATE {:CLOCk | :CONDition | :LOGic | :SLOPe |

:THReshold}
• :ADVanced:MODE TV
• :ADVanced:TV
• :ADVanced:TV:MODE {L525 | L625 | UDTV}
• :ADVanced:MODE VIOLation
• :ADVanced:VIOLation (See the following list.)

The :TRIGger:ADVanced:VIOLation modes and commands described in this
chapter include:

• :VIOLation:MODE SETup
• :VIOLation:SETup:MODE SETup
• :VIOLation:SETup:SETup:CSOurce
• :VIOLation:SETup:SETup:CSOurce:LEVel
• :VIOLation:SETup:SETup:CSOurce:EDGE
• :VIOLation:SETup:SETup:DSOurce
• :VIOLation:SETup:SETup:DSOurce:LTHReshold
• :VIOLation:SETup:SETup:DSOurce:HTHReshold
• :VIOLation:SETup:SETup:TIME
• :VIOLation:SETup:MODE HOLD
• :VIOLation:SETup:HOLD:CSOurce
• :VIOLation:SETup:HOLD:CSOurce:LEVel

29-4

• :VIOLation:SETup:HOLD:CSOurce:EDGE
• :VIOLation:SETup:HOLD:DSOurce
• :VIOLation:SETup:HOLD:DSOurce:LTHReshold
• :VIOLation:SETup:HOLD:DSOurce:HTHReshold
• :VIOLation:SETup:HOLD:TIME

• :VIOLation:SETup:MODE SHOLd
• :VIOLation:SETup:SHOLd:CSOurce
• :VIOLation:SETup:SHOLd:CSOurce:LEVel
• :VIOLation:SETup:SHOLd:CSOurce:EDGE
• :VIOLation:SETup:SHOLd:DSOurce
• :VIOLation:SETup:SHOLd:DSOurce:LTHReshold
• :VIOLation:SETup:SHOLd:DSOurce:HTHReshold
• :VIOLation:SETup:SHOLd:SetupTIMe
• :VIOLation:SETup:SHOLd:HoldTIMe

• :VIOLation:MODE TRANsition
• :VIOLation:TRANsition:SOURce
• :VIOLation:TRANsition:TYPE
• :VIOLation:TRANsition:GTHan
• :VIOLation:TRANsition:LTHan

• :VIOLation:MODE PWIDth
• :VIOLation:PWIDth:SOURce
• :VIOLation:PWIDth:POLarity
• :VIOLation:PWIDth:DIRection
• :VIOLation:PWIDth:WIDTh

29-5

Organization of Trigger Modes and Commands

The trigger modes are summarized in the next section. In addition, each mode is
described before its set of commands in the following sections.
These general trigger commands are described first.
• AND:ENABle
• AND:SOURce
• HOLDoff
• HTHReshold
• HYSTeresis
• LEVel
• LTHReshold
• SWEep
The following sections in this chapter describe the individual trigger modes and
commands, and are organized in this order:
• COMM
• DELay
• EDGE
• GLITch
• HOLDoff
• PATTern
• PWIDth
• RUNT
• SHOLd
• STATe
• TIMeout
• TRANsition
• TV
• WINDow
• ADVanced

• COMM
• DELay
• PATTern
• STATe

29-6

• TV
• VIOLation

Trigger Commands

29-7

Summary of Trigger Modes and Commands

Make sure the oscilloscope is in the proper trigger mode for the command
you want to send. One method of ensuring that the oscilloscope is in the
proper trigger mode is to send the :TRIGger:MODE command in the same
program message as the parameter to be set.

For example, these commands place the instrument in the advanced
triggering mode you select:

:TRIGger:MODE ADVanced
:TRIGger:ADVanced:MODE <Advanced_trigger_mode>

<Advanced
_trigger_mode>

Advanced trigger modes include COMM, DELay, PATTern, STATe, TV,
and VIOLation. Each mode is described with its command set in this
chapter.

Summary of Trigger Commands
The following table lists the TRIGger subsystem commands that are
available for each trigger mode.

29-8

Trigger Commands

Table 0-2

Valid Commands for Specific Trigger Modes

Main Level ADVanced COMM DELay EDGE GLITch
AND
 ENABle
 SOURce
HOLDoff
HTHRshold
HYSTeresis
LEVel
LTHRshold
MODE
SWEep

COMM
DELay
PATTern
STATe
TV
VIOLation

BWIDth
ENCode
LEVel
PATTern
POLarity
SOURce

MODE
 EDLY
 ARM
 EVENt
 TRIGger
 TDLY
 ARM
 DELay
 TRIGger

COUPling
SLOPe
SOURce

POLarity
SOURce
WIDTh

PATTern PWIDth RUNT SHOLd STATe
CONDition
LOGic
THReshold

DIRection
POLarity
SOURce
TPOint
WIDTh

SOURce
POLarity
QUALified

CSOurce
DSOurce
HOLDTIME
HTIMe
MODE
SETUPTIME
STIMe

CLOCk
CONDition
LOGic
SLOPe
THReshold

TIMeout TRANsition TV VIOLation WINDow
CONDition
SOURce

DIRection
SOURce
TYPE

MODE
 STV
 FIELd
 LINE
 SOURce
 SPOLarity
 UDTV
 ENUMber
 PGTHan
 POLarity
 SOURce

MODE
 PWIDth
 SETup
 TRANsition

(See the
:TRIGger:AD
Vanced:VIOL
ation
commands in
this chapter
for
descriptions of
the various
violation
modes and
commands.)

CONDition
SOURce
TPOint

29-9

Trigger Commands

Use :TRIGger:SWEep to Select Sweep Mode

Select the Infiniium Oscilloscope’s Auto, Triggered, or Single Sweep mode with
:TRIGger:SWEep {AUTO | TRIGgered | SINGle}.

29-10

Trigger Commands
Trigger Modes

Trigger Modes

Command :TRIGger:MODE {EDGE | GLITch | PATTern | STATe |
DELay | TIMeout | TV | COMM | RUNT | SHOLd | TRANsition
| WINDow | PWIDth | ADVanced}

The :TRIGger:MODE command selects the trigger mode.

Table 0-3 Trigger Mode Settings

Mode Definition

COMM COMM mode lets you trigger on a serial pattern of bits in a waveform.

DELay Delay by Events mode lets you view pulses in your waveform that occur
a number of events after a specified waveform edge. Delay by Time
mode lets you view pulses in your waveform that occur a long time after
a specified waveform edge.

EDGE Edge trigger mode.

GLITch Trigger on a pulse that has a width less than a specified amount of time.

PATTern Pattern triggering lets you trigger the oscilloscope using more than one
channel as the trigger source. You can also use pattern triggering to
trigger on a pulse of a given width.

PWIDth Pulse width triggering lets you trigger on a pulse that is greater than or
less than a specified width and of a certain polarity.

RUNT Runt triggering lets you trigger on positive or negative pulses that are
smaller in amplitude than other pulses in your waveform.

SHOLd Setup and Hold triggering let you trigger on Setup or Hold violations
in your circuit.

STATe State triggering lets you set the oscilloscope to use several channels as
the trigger source, with one of the channels being used as a clock
waveform.

TIMeout Timeout triggering lets you trigger when the waveform remains high
too long, low to long, or unchanged too long.

TRANsition Edge Transition triggering lets you trigger on an edge that violates a
rise time or fall time specification.

TV TV trigger mode lets you trigger the oscilloscope on one of the standard
television waveforms. You can also use this mode to trigger on a custom
television waveform that you define.

VIOLation Trigger violation modes: Pulse WIDth, SETup, TRANsition.

29-11

Trigger Commands
Trigger Modes

Query :TRIGger:MODE?

The query returns the currently selected trigger mode.

Returned Format [:TRIGger:MODE] {EDGE | GLITch | ADVanced}<NL>

WINDow Window triggering lets you define a window on screen and then trigger
when the waveform exits the window, enters it, or stays inside/outside
the window for too long/short.

ADVanced Allows backward compatibility access to the DELay, PATTern,
STATe, TV, and VIOLation modes.

 COMM COMM mode lets you trigger on a serial pattern of bits in a waveform.

 DELay Delay by Events mode lets you view pulses in your waveform that occur
a number of events after a specified waveform edge. Delay by Time
mode lets you view pulses in your waveform that occur a long time after
a specified waveform edge.

 PATTern Pattern triggering lets you trigger the oscilloscope using more than one
channel as the trigger source. You can also use pattern triggering to
trigger on a pulse of a given width.

 STATe State triggering lets you set the oscilloscope to use several channels as
the trigger source, with one of the channels being used as a clock
waveform.

 TV TV trigger mode lets you trigger the oscilloscope on one of the standard
television waveforms. You can also use this mode to trigger on a custom
television waveform that you define.

 VIOLation Trigger violation modes: Pulse WIDth, SETup, TRANsition.

29-12

Trigger Commands
AND:ENABle

AND:ENABle

Command :TRIGger:AND:ENABle {{ON | 1} | {OFF | 0}}

The :TRIGger:AND:ENABle command enables the ability to further qualify the
trigger using other channels.

Query :TRIGger:AND:ENABle?

The query returns the current state of the AND qualifier.

Returned Format [:TRIGger:AND:ENABle] {1 | 0}<NL>

29-13

Trigger Commands
AND:SOURce

AND:SOURce

Command :TRIGger:AND:SOURce CHANnel<N>,{HIGH | LOW |
DONTcare}

The :TRIGger:AND:SOURce command sets the logic value used to qualify the trigger
for the specified channel. The TRIGger:LEVel command determines what voltage
level is considered a HIGH or a LOW logic value. If you set more than one channel
to a HIGH or a LOW, then the multiple channels are used to qualify the trigger.

<N> An integer, 1 - 4.

Query :TRIGger:AND:SOURce? CHANnel<N>

The query returns the logic value for the designated channel.

Returned Format [:TRIGger:AND:SOURce CHANnel<N>] {HIGH | LOW | DONTcare}<NL>

29-14

Trigger Commands
HOLDoff

HOLDoff

Command :TRIGger:HOLDoff <holdoff_time>

The :TRIGger:HOLDoff command specifies the amount of time the oscilloscope
should wait after receiving a trigger before enabling the trigger again.

<holdoff_time> A real number for the holdoff time, ranging from 50 ns to 10 s.

Query :TRIGger:HOLDoff?

The query returns the current holdoff value for the current mode.

Returned Format [:TRIGger:HOLDoff] <holdoff><NL>

29-15

HOLDoff:MAX

Command :TRIGger:HOLDoff:MAX <holdoff_time>

This command is only used when you set the :TRIGger:HOLDoff:MODe command
to RANDom. The RANDom mode varies the trigger holdoff from one acquisition to
another by randomizing the time values between triggers. The randomized values can
be between the values specified by the :TRIGger:HOLDoff:MAX and
:TRIGger:HOLDoff:MIN commands.

The Random holdoff mode ensures that the oscilloscope re-arms after each acquisition
in a manner that minimizes or eliminates the likelihood of triggering at the beginning
of a DDR burst. Randomizing the holdoff increases the likelihood that the oscilloscope
will trigger on different data phases of a multiphase (8 data transfer) burst. This mode
mixes up the traffic pattern the oscilloscope triggers on and is very effective when
used on repeating patterns.

<holdoff_time> A real number for the maximum random holdoff time.

Query :TRIGger:HOLDoff:MAX?

The query returns the current maximum holdoff value for the random holdoff mode.

Returned Format [:TRIGger:HOLDoff:MAX] <holdoff><NL>

29-16

HOLDoff:MIN

Command :TRIGger:HOLDoff:MIN <holdoff_time>

This command is only used when you set the :TRIGger:HOLDoff:MODe command
to RANDom. The RANDom mode varies the trigger holdoff from one acquisition to
another by randomizing the time values between triggers. The randomized values can
be between the values specified by the :TRIGger:HOLDoff:MAX and
:TRIGger:HOLDoff:MIN commands.

The Random holdoff mode ensures that the oscilloscope re-arms after each acquisition
in a manner that minimizes or eliminates the likelihood of triggering at the beginning
of a DDR burst. Randomizing the holdoff increases the likelihood that the oscilloscope
will trigger on different data phases of a multiphase (8 data transfer) burst. This mode
mixes up the traffic pattern the oscilloscope triggers on and is very effective when
used on repeating patterns.

<holdoff_time> A real number for the minimum random holdoff time.

Query :TRIGger:HOLDoff:MIN?

The query returns the current minimum holdoff value for the random holdoff mode.

Returned Format [:TRIGger:HOLDoff:MIN] <holdoff><NL>

29-17

Trigger Commands
HOLDoff:MODe

HOLDoff:MODe

Command :TRIGger:HOLDoff:MAX {FIXed | RANDom}

The Fixed mode sets the amount of time that the oscilloscope waits before re-arming
the trigger circuitry. It can be used to stabilize the display of complex waveforms.

The RANDom mode varies the trigger holdoff from one acquisition to another by
randomizing the time values between triggers. The randomized values can be between
the values specified by the :TRIGger:HOLDoff:MAX and :TRIGger:HOLDoff:MIN
commands.
The Random holdoff mode ensures that the oscilloscope re-arms after each acquisition
in a manner that minimizes or eliminates the likelihood of triggering at the beginning
of a DDR burst. Randomizing the holdoff increases the likelihood that the oscilloscope
will trigger on different data phases of a multiphase (8 data transfer) burst. This mode
mixes up the traffic pattern the oscilloscope triggers on and is very effective when
used on repeating patterns.

Query :TRIGger:HOLDoff:MODe?

The query returns the current holdoff mode.

Returned Format [:TRIGger:HOLDoff:MODE] {FIXed | RANDom}<NL>

29-18

Trigger Commands
HTHReshold

HTHReshold

Command :TRIGger:HTHReshold{{CHANnel<N> |
AUXiliary},<level>}

This command specifies the high threshold voltage level for the selected trigger
source. Set the high threshold level to a value considered to be a high level for your
logic family; your data book gives two values, VIH and VOH.

<N> An integer, 1 - 4.

<level> A real number for the voltage level for the trigger source.

Query :TRIGger:HTHReshold? {CHANnel<N> | AUXiliary}

The query returns the currently defined high threshold voltage level for the trigger
source.

Returned Format [:TRIGger:HTHReshold {CHANnel<N> | AUXiliary},] <level><NL>

29-19

Trigger Commands
HYSTeresis

HYSTeresis

Command :TRIGger:HYSTeresis {NORMal|NREJect}

The :TRIGger:HYSTeresis command specifies the trigger hysteresis (noise reject) as
either normal or maximum. The NORMal option is the typical hysteresis selection.
The NREJect (noise reject) option gives maximum hysteresis but the lowest trigger
bandwidth.

Query :TRIGger:HYSTeresis?

The query returns the current hysteresis setting.

Returned Format [:TRIGger:HYSTeresis] {NORMal|NREJect}<NL>

29-20

LEVel

Command :TRIGger:LEVel {CHANnel<N>|AUX},<level>}

The :TRIGger:LEVel command specifies the trigger level on the specified channel
for the trigger source. Only one trigger level is stored in the oscilloscope for each
channel. This level applies to the channel throughout the trigger dialogs (Edge, Glitch,
and Advanced). This level also applies to all the High Threshold (HTHReshold)
values in the Advanced Violation menus.

<N> An integer, 1 - 4.

<level> A real number for the trigger level on the specified channel or Auxilliary Trigger Input.

Query :TRIGger:LEVel? {CHANnel<N>|AUX}

The query returns the specified channel’s trigger level.

Returned Format [:TRIGger:LEVel {CHANnel<N>|AUX},] <level><NL>

29-21

LTHReshold

Command :TRIGger:LTHReshold {CHANnel<N>},<level>

This command specifies the low threshold voltage level for the selected trigger source.
This command specifies the low threshold voltage level for the selected trigger source.
Set the low threshold level to a value considered to be a low level for your logic family;
your data book gives two values, VIL and VOL.

<N> An integer, 1 - 4

<level> A real number for the voltage level for the trigger source.

Query :TRIGger:LTHReshold? {CHANnel<N>|EXTernal}

The query returns the currently defined low threshold for the trigger source.

Returned Format [:TRIGger:LTHReshold {CHANnel<N>|EXTernal},] <level><NL>

29-22

Trigger Commands
SWEep

SWEep

Command :TRIGger:SWEep {AUTO|TRIGgered|SINGle}

The :TRIGger:SWEep command selects the oscilloscope sweep mode.

<AUTO> When you select AUTO, if a trigger event does not occur within a time determined
by the oscilloscope settings, the oscilloscope automatically forces a trigger which
causes the oscilloscope to sweep. If the frequency of your waveform is 50 Hz or less,
you should not use the AUTO sweep mode because it is possible that the oscilloscope
will automatically trigger before your waveform trigger occurs.

<TRIGgered> When you select TRIGgered, if no trigger occurs, the oscilloscope will not sweep,
and the previously acquired data will remain on the screen.

<SINGle> When you select SINGle, if no trigger occurs, the oscilloscope will not sweep, and
the previously acquired data will remain on the screen.

Query :TRIGger:SWEep?

The query returns the specified channel’s trigger level.

Returned Format [:TRIGger:SWEep] {AUTO|TRIGgered|SINGle}<NL>

29-23

Trigger Commands
SWEep

Trigger Mode-Specific Commands

Set the Mode Before Executing Commands
Before you can execute the trigger mode-specific commands, set the mode.
For example, if you were using Edge triggering, you would start by entering:

:TRIGger:MODE EDGE

This command sets the conditions for the EDGE slope and source trigger
commands.

To query the oscilloscope for the trigger mode, enter:

:TRIGger:MODE?

You can then set up the :TRIGger:EDGE commands with the following
commands and queries:

• COUPling
• SLOPe
• SOURce

29-24

Trigger Commands
COMM:BWIDth

COMM:BWIDth

Command :TRIGger:COMM:BWIDth <bwidth_value>

The :TRIGger:COMM:BWIDth command is used to set the width of a bit for your
waveform. The bit width is usually defined in the mask standard for your waveform.

<bwidth_value> A real number that represents the width of a bit.

Query :TRIGger:COMM:BWIDth?

The query returns the current bit width.

Returned Format [:TRIGger:COMM:BWIDth] <bwidth_value><NL>

29-25

COMM:ENCode

Command :TRIGger:COMM:ENCode {RZ | NRZ}

This :TRIGger:COMM:ENCode command sets the type of waveform encoding for
your waveform. You should use NRZ for CMI type waveforms and RZ for all other
type of waveforms.

Query :TRIGger:COMM:ENCode?

The :TRIGger:COMM:ENCode? query returns the current value of encoding

Returned Format [:TRIGger:COMM:ENCode] {RZ | NRZ}<NL>

29-26

Trigger Commands
COMM:PATTern

COMM:PATTern

Command :TRIGger:COMM:PATTern
<bit>[,<bit[,<bit[,<bit[,<bit[,<bit]]]]]

The :TRIGger:COMM:PATTern command sets the pattern used for triggering the
oscilloscope when in communication trigger mode. The pattern can be up to 6 bits
long. For NRZ type waveforms with positive polarity, there must be at least one logic
0 to logic 1 transition in the pattern. For NRZ waveforms with negative polarity there
must be at least one logic 1 to logic 0 transition in the pattern. For RZ type waveforms
the pattern must have at least one logic 1 bit for positive polarity. For RZ type
waveforms the pattern must have at least one logic -1 bit for negative polarity.

<bit> A 1, -1, or 0.

Query :TRIGger:COMM:PATTern?

The :TRIGger:COMM:PATTern? query returns the current communication
trigger pattern.

Returned Format [:TRIGger:COMM:PATTern] <pattern><NL>

<pattern> A string of up to 6 characters.

29-27

Trigger Commands
COMM:POLarity

COMM:POLarity

Command :TRIGger:COMM:POLarity {POSitive | NEGative}

The :TRIGger:COMM:POLarity command directly controls the trigger slope
used for communication trigger. When set to a positive value, the rising edge of a
pulse or waveform is used to trigger the oscilloscope. When set to a negative value,
the falling edge of a pulse or waveform is used.
The polarity setting is also used to check for valid patterns. If you are trying to trigger
on an isolated 1 pattern, you should set the polarity to positive. If you are trying to
trigger on an isolated -1 pattern, you should set the polarity to negative.

Query :TRIGger:COMM:POLarity?

The :TRIGger:COMM:POLarity? query returns the current setting for
polarity.

Returned Format [:TRIGger:COMM:POLarity} {POSitive | NEGative}<NL>

29-28

Trigger Commands
COMM:SOURce

COMM:SOURce

Command :TRIGger:COMM:SOURce CHANnel<N>

The :TRIGger:COMM:SOURce command selects the channel used for the
communication trigger.

<N> An integer, 1-4.

Query :TRIGger:COMM:SOURce?

The :TRIGger:COMM:SOURce? query returns the currently selected
communication trigger source.

29-29

Trigger Commands
DELay:ARM:SOURce

DELay:ARM:SOURce

Command :TRIGger:DELay:ARM:SOURce {CHANnel<N> | DIGital<M>}

This command sets the Arm On source for arming the trigger circuitry when the
oscilloscope is in the Delay trigger mode.

<N> An integer, 1 - 4.

<M> An integer, 0 - 15. The digital channels are only available on the MSO oscilloscopes
or DSO models with the MSO license installed.

Query :TRIGger:DELay:ARM:SOURce?

The query returns the currently defined Arm On source for the Delay trigger mode.

Returned Format [:TRIGger:DELay:EDELay:ARM:SOURce]
{CHANnel<N>|DIGital<M>}<NL>

29-30

Trigger Commands
DELay:ARM:SLOPe

DELay:ARM:SLOPe

Command :TRIGger:DELay:ARM:SLOPe {NEGative | POSitive}

This command sets a positive or negative slope for arming the trigger circuitry when
the oscilloscope is in the Delay trigger mode.

Query :TRIGger:DELay:ARM:SLOPe?

The query returns the currently defined slope for the Delay trigger mode.

Returned Format [:TRIGger:DELay:ARM:SLOPe] {NEGative | POSitive}<NL>

29-31

Trigger Commands
DELay:EDELay:COUNt

DELay:EDELay:COUNt

Command :TRIGger:DELay:EDELay:COUNt <edge_number>

This command sets the event count for a Delay By Event trigger event.

<edge_num> An integer from 0 to 16,000,000 specifying the number of edges to delay.

Query :TRIGger:DELay:EDELay:COUNt?

The query returns the currently defined number of events to delay before triggering
on the next Trigger On condition in the Delay By Event trigger mode.

Returned Format [:TRIGger:DELay:EDELay:COUNt] <edge_number><NL>

29-32

DELay:EDELay:SOURce

Command :TRIGger:DELay:EDELay:SOURce {CHANnel<N> |
DIGital<M>}

This command sets the Event source for a Delay By Event trigger event.

<N> An integer, 1 - 4.

<M> An integer, 0 - 15. The digital channels are only available on the MSO oscilloscopes
or DSO models with the MSO license installed.

Query :TRIGger:DELay:EDELay:SOURce?

The query returns the currently defined Event source in the Delay By Event trigger
mode.

Returned Format [:TRIGger:DELay:EDELay:SOURce] {CHANnel<N>|DIGital<M>}<NL>

29-33

DELay:EDELay:SLOPe

Command :TRIGger:DELay:EDELay:SLOPe {NEGative | POSitive}

This command sets the trigger slope for the Delay By Event trigger event.

Query :TRIGger:DELay:EDELay:SLOPe?

The query returns the currently defined slope for an event in the Delay By Event
trigger mode.

Returned Format [:TRIGger:DELay:EDELay:SLOPe] {NEGative | POSitive}<NL>

29-34

Trigger Commands
DELay:MODE

DELay:MODE

Command :TRIGger:DELay:MODE {EDELay | TDELay}

The :TRIGger:DELay:MODE command selects the type of delay trigger mode to
either events or to time.

Query :TRIGger:DELay:MODE?

The query returns the currently selected delay trigger mode.

Returned Format [:TRIGger:DELay:MODE] {EDELay | TDELay}<NL>

29-35

Trigger Commands
DELay:TDELay:TIME

DELay:TDELay:TIME

Command :TRIGger:DELay:TDELay:TIME <delay>

This command sets the delay for a Delay By Time trigger event.

<delay> Time, in seconds, set for the delay trigger, from 10 ns to 10 s.

Query :TRIGger:DELay:TDELay:TIME?

The query returns the currently defined time delay before triggering on the next
Trigger On condition in the Delay By Time trigger mode.

Returned Format [:TRIGger:DELay:TDELay:TIME] <delay><NL>

29-36

Trigger Commands
DELay:TRIGger:SOURce

DELay:TRIGger:SOURce

Command :TRIGger:DELay:TRIGger:SOURce
{CHANnel<N>|DIGital<M>}

This command sets the Trigger On source for a Delay trigger event.

<N> An integer, 1 - 4.

<M> An integer, 0 - 15. The digital channels are only available on the MSO oscilloscopes
or DSO models with the MSO license installed.

Query :TRIGger:DELay:TRIGger:SOURce?

The query returns the currently defined Trigger On source in the Delay trigger mode.

Returned Format [:TRIGger:DELay:TRIGger:SOURce] {CHANnel<N>|DIGital<M>}<NL>

29-37

Trigger Commands
DELay:TRIGger:SLOPe

DELay:TRIGger:SLOPe

Command :TRIGger:DELay:TRIGger:SLOPe {NEGative | POSitive}

This command sets the trigger slope for the Delay trigger event.

Query :TRIGger:DELay:TRIGger:SLOPe?

The query returns the currently defined slope for an event in the Delay trigger mode.

Returned Format [:TRIGger:DELay:TRIGger:SLOPe] {NEGative | POSitive}<NL>

29-38

EDGE:COUPling

Command :TRIGger:EDGE:COUPling {AC|DC|LFReject|HFReject}

The :TRIGger:EDGE:COUPling command sets the trigger coupling when
:TRIG:EDGE:SOURce is set to one of the channels.

Query :TRIGger:EDGE:COUPling?

The query returns the currently selected coupling for the specified edge trigger source.

Returned Format [:TRIGger:EDGE:COUPling] {AC|DC|LFReject|HFReject}<NL>

29-39

EDGE:SLOPe

Command :TRIGger:EDGE:SLOPe {POSitive|NEGative|EITHer}

The :TRIGger:EDGE:SLOPe command sets the slope of the trigger source previously
selected by the :TRIGger:EDGE:SOURce command. The LINE source has no slope.

Query :TRIGger:EDGE:SLOPe?

The query returns the currently selected slope for the specified edge trigger source.

Returned Format [:TRIGger:EDGE:SLOPe] {POS|NEG|EITH}<NL>

29-40

Trigger Commands
EDGE:SOURce

EDGE:SOURce

Command :TRIGger:EDGE:SOURce {CHANnel<N> | DIGital<M> | AUX
| LINE }

The :TRIGger:EDGE:SOURce command selects the source for edge mode triggering.
This is the source that will be used for subsequent :TRIGger:EDGE:SLOPe
commands or queries.

<N> An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<M> An integer, 0 - 15. The digital channels are only available on the MSO oscilloscopes
or DSO models with the MSO license installed.

Query :TRIGger:EDGE:SOURce?

The query returns the currently selected edge mode trigger source.

Returned Format [:TRIGger:EDGE:SOURce] {CHANnel<N> | DIGital<M> | AUX | LINE
}<NL>

29-41

Trigger Commands
GLITch:POLarity

GLITch:POLarity

Command :TRIGger:GLITch:POLarity {POSitive|NEGative}

This command defines the polarity of the glitch as positive or negative. The trigger
source must be set using the :TRIGger:GLITch:SOURce command.

Query :TRIGger:GLITch:POLarity?

The query returns the currently selected glitch polarity.

Returned Format [:TRIGger:GLITch:POLarity] {POS|NEG}<NL>

29-42

Trigger Commands
GLITch:SOURce

GLITch:SOURce

Command :TRIGger:GLITch:SOURce {CHANnel<N> | DIGital<M>}

This command sets the source for the glitch trigger mode.

<N> An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<M> An integer, 0 - 15. The digital channels are only available on the MSO oscilloscopes
or DSO models with the MSO license installed.

Query :TRIGger:GLITch:SOURce?

The query returns the currently selected source for the glitch trigger mode.

Returned Format [:TRIGger:GLITch:SOURce] {CHANnel<N> | DIGital<M>}<NL>

29-43

Trigger Commands
GLITch:WIDTh

GLITch:WIDTh

Command :TRIGger:GLITch:WIDTh <width>

This command sets the glitch width. The oscilloscope will trigger on a pulse that has
a width less than the specified width.

<width> A real number for the glitch width, ranging from 1.5 ns to 10 s.

 Query :TRIGger:GLITch:WIDTh?

The query returns the currently specified glitch width.

Returned Format [:TRIGger:GLITch:WIDTh] <width><NL>

29-44

Trigger Commands
PATTern:CONDition

PATTern:CONDition

Command :TRIGger:PATTern:CONDition {ENTered | EXITed |
{GT,<time>[,PEXits|TIMeout]} |
{LT,<time>} | {RANGe,<gt_time>,<lt_time>}}

This command describes the condition applied to the trigger pattern to actually
generate a trigger.

<gt_time> The minimum time (greater than time) for the trigger pattern, from 10 ns to 9.999 s.

<lt_time> The maximum time (less than time) for the trigger pattern, from 10.5 ps to 10 s.

<time> The time condition, in seconds, for the pattern trigger, from 100 ps to 10 s.

When using the GT (Present >) parameter, the PEXits (Pattern Exits) or the TIMeout
parameter controls when the trigger is generated.

Query :TRIGger:PATTern:CONDition?

The query returns the currently defined trigger condition.

Returned Format [:TRIGger:PATTern:CONDition] {ENTered|EXITed |
{GT,<time>[,PEXits|TIMeout]} | {LT,<time>} |
{RANGe,<gt_time>, <lt_time>}}<NL>

29-45

PATTern:LOGic

Command :TRIGger:PATTern:LOGic {CHANnel<N> |
DIGital<M>},{HIGH | LOW | DONTcare | RISing | FALLing}

This command defines the logic criteria for a selected channel.

<N> An integer, 1 - 4.

<M> An integer, 0 - 15. The digital channels are only available on the MSO oscilloscopes
or DSO models with the MSO license installed.

<Query :TRIGger:PATTern:LOGic? CHANnel<N>}

The query returns the current logic criteria for a selected channel.

Returned Format [:TRIGger:PATTern:LOGic {CHANnel<N> | DIGital<M>},] {HIGH |
LOW | DONTcare | RISing | FALLing}<NL>

29-46

PWIDth:DIRection

Command :TRIGger:PWIDth:DIRection {GTHan | LTHan}

This command specifies whether a pulse must be wider or narrower than the width
value to trigger the oscilloscope.

Query :TRIGger:PWIDth:DIRection?

The query returns the currently defined direction for the pulse width trigger.

Returned Format [:TRIGger:PWIDth:DIRection] {GTHan | LTHan}<NL>

29-47

Trigger Commands
PWIDth:POLarity

PWIDth:POLarity

Command :TRIGger:PWIDth:POLarity {NEGative | POSitive}

This command specifies the pulse polarity that the oscilloscope uses to determine a
pulse width violation. For a negative polarity pulse, the oscilloscope triggers when
the rising edge of a pulse crosses the trigger level. For a positive polarity pulse, the
oscilloscope triggers when the falling edge of a pulse crosses the trigger level.

Query :TRIGger:PWIDth:POLarity?

The query returns the currently defined polarity for the pulse width trigger.

Returned Format [:TRIGger:PWIDth:POLarity] {NEGative | POSitive}<NL>

29-48

Trigger Commands
PWIDth:SOURce

PWIDth:SOURce

Command :TRIGger:PWIDth:SOURce {CHANnel<N> | DIGital<M>}

This command specifies the channel source used to trigger the oscilloscope with the
pulse width trigger.

<N> An integer, 1 - 4.

<M> An integer, 0 - 15. The digital channels are only available on the MSO oscilloscopes
or DSO models with the MSO license installed.

Query :TRIGger:PWIDth:SOURce?

The query returns the currently defined channel source for the pulse width trigger.

Returned Format [:TRIGger:PWIDth:SOURce] {CHANnel<N> | DIGital<M>}<NL>

29-49

Trigger Commands
PWIDth:TPOint

PWIDth:TPOint

Command :TRIGger:PWIDth:TPOint {EPULse | TIMeout}

This command specifies whether the pulse width trigger should occur at the end of
the pulse or at a specified timeout period. This command is only available if the pulse
direction is set to GTHan.

Query :TRIGger:PWIDth:TPOint?

The query returns the currently defined trigger on point for the pulse width trigger.

Returned Format [:TRIGger:PWIDth:TPOint] {EPULse | TIMeout}<NL>

29-50

Trigger Commands
PWIDth:WIDTh

PWIDth:WIDTh

Command :TRIGger:PWIDth:WIDTh <width>

This command specifies how wide a pulse must be to trigger the oscilloscope.

<width> Pulse width, which can range from 250 ps to 10 s.

Query :TRIGger:PWIDth:WIDTh?

The query returns the currently defined width for the pulse.

Returned Format [:TRIGger:PWIDth:WIDTh] <width><NL>

29-51

Trigger Commands
RUNT:POLarity

RUNT:POLarity

Command :TRIGger:RUNT:POLarity {POSitive | NEGative}

This command defines the polarity of the runt pulse as positive or negative. The
trigger source must be set using the :TRIGger:RUNT:SOURce command.

Query :TRIGger:RUNT:POLarity?

The query returns the currently selected runt pulse polarity.

Returned Format [:TRIGger:RUNT:POLarity] {POSitive | NEGative}<NL>

29-52

Trigger Commands
RUNT:QUALified

RUNT:QUALified

Command :TRIGger:RUNT:QUALified {{ON | 1} | {OFF | 0}}

This command enables the time qualified runt pulse feature the polarity of the runt
pulse as positive or negative. The trigger source must be set using the
:TRIGger:RUNT:SOURce command.

Query :TRIGger:RUNT:QUALified?

The query returns the current state of the time qualified runt pulse feature.

Returned Format [:TRIGger:RUNT:QUALified] {1 | 0}<NL>

29-53

Trigger Commands
RUNT:SOURce

RUNT:SOURce

Command :TRIGger:RUNT:SOURce CHANnel<N>

This command sets the source for the runt trigger mode.

<N> An integer, 1 - 4.

Query :TRIGger:RUNT:SOURce?

The query returns the currently selected source for the runt trigger mode.

Returned Format [:TRIGger:RUNT:SOURce] CHANnel<N><NL>

29-54

RUNT:TIME

Command :TRIGger:RUNT:TIME <time>

This command sets the time qualifier. The oscilloscope will trigger on a runt pulse
that has a width greater than the specified time.

<time> A real number for the time greater than qualifier, ranging from 250 ps to 30 ns.

 Query :TRIGger:RUNT:TIME?

The query returns the currently specified glitch width.

Returned Format [:TRIGger:RUNT:TIME] <time><NL>

29-55

SHOLd:CSOurce

Command :TRIGger:SHOLd:CSOurce CHANnel<N>

This command specifies the clock source for the clock used for the trigger setup and
hold violation. The clock must pass through the voltage level you have set before the
trigger circuitry looks for a setup and hold time violation.

<N> An integer, 1 - 4.

Query :TRIGger:SHOLd:CSOurce?

The query returns the currently defined clock source for the trigger setup and hold
violation.

Returned Format [:TRIGger:SHOLd:CSOurce] CHANnel<N><NL>

29-56

Trigger Commands
SHOLd:CSOurce:EDGE

SHOLd:CSOurce:EDGE

Command :TRIGger:SHOLd:CSOurce:EDGE {RISing | FALLing}

This command specifies the clock source trigger edge for the clock used for the trigger
setup and hold violation. The clock must pass through the voltage level you have set
before the trigger circuitry looks for a setup and hold time violation.

Query :TRIGger:SHOLd:CSOurce:EDGE?

The query returns the currently defined clock source edge for the trigger setup and
hold violation level for the clock source.

Returned Format [:TRIGger:SHOLd:CSOurce:EDGE] {RISing | FALLing}<NL>

29-57

Trigger Commands
SHOLd:DSOurce

SHOLd:DSOurce

Command :TRIGger:SHOLd:DSOurce CHANnel<N>

The data source commands specify the data source for the trigger setup and hold
violation.

<N> An integer, 1 - 4.

Query :TRIGger:SHOLd:DSOurce?

The query returns the currently defined data source for the trigger setup and hold
violation.

Returned Format [:TRIGger:SHOLd:DSOurce] CHANnel<N><NL>

29-58

Trigger Commands
SHOLd:HoldTIMe (HTIMe)

SHOLd:HoldTIMe (HTIMe)

Command :TRIGger:SHOLd:HoldTIMe <time>

This command specifies the amount of hold time used to test for both a setup and hold
trigger violation. The hold time is the amount of time that the data must be stable and
valid after a clock edge.

<time> Hold time, in seconds.

Query :TRIGger:SHOLD:HoldTIMe?

The query returns the currently defined hold time for the setup and hold trigger
violation.

Returned Format [:TRIGger:SHOLD:HoldTIMe] <time><NL>

29-59

Trigger Commands
SHOLd:MODE

SHOLd:MODE

Command :TRIGger:SHOLd:MODE {SETup | HOLD | SHOLd}

SETup When using the setup time mode, a time window is defined where the right edge is
the clock edge and the left edge is the selected time before the clock edge. The
waveform must stay outside of the trigger level thresholds during this time window.
If the waveform crosses a threshold during this time window, a violation event occurs
and the oscilloscope triggers.

HOLD When using the hold time mode, the waveform must not cross the threshold voltages
after the specified clock edge for at least the hold time you have selected. Otherwise,
a violation event occurs and the oscilloscope triggers.

SHOLd When using the setup and hold time mode, if the waveform violates either a setup
time or hold time, the oscilloscope triggers. The total time allowed for the sum of
setup time plus hold time is 24 ns maximum.

Query :TRIGger:SHOLd:MODE?

The query returns the currently selected trigger setup violation mode.

Returned Format [:TRIGger:SHOLd:MODE] {SETup | HOLD | SHOLd}<NL>

29-60

Trigger Commands
SHOLd:SetupTIMe

SHOLd:SetupTIMe

Command :TRIGger:SHOLd:SetupTIMe <time>

This command specifies the amount of setup time used to test for both a setup and
hold trigger violation. The setup time is the amount of time that the data must be
stable and valid before a clock edge.

<time> Setup time, in seconds.

Query :TRIGger:SHOLd:SetupTIMe?

The query returns the currently defined setup time for the setup and hold trigger
violation.

Returned Format [:TRIGger:SHOLd:SetupTIMe] <time><NL>

29-61

STATe:CLOCk

Command :TRIGger:STATe:CLOCk {CHANnel<N> | DIGital<M>}

This command selects the source for the clock waveform in the State Trigger Mode.

<N> An integer, 1 - 4.

<M> An integer, 0 - 15. The digital channels are only available on the MSO oscilloscopes
or DSO models with the MSO license installed.

Query :TRIGger:STATe:CLOCk?

The query returns the currently selected clock source.

Returned Format [:TRIGger:STATe:CLOCk] {CHANnel<N> | DIGital<M>}<NL>

29-62

STATe:LOGic

Command :TRIGger:STATe:LOGic {CHANnel<N> | DIGital<M>},{LOW
| HIGH | DONTcare | RISing | FALLing}

This command defines the logic state of the specified source for the state pattern. The
command produces a settings conflict on a channel that has been defined as the clock.

<N> An integer, 1 - 4

<M> An integer, 0 - 15. The digital channels are only available on the MSO oscilloscopes
or DSO models with the MSO license installed.

Query :TRIGger:STATe:LOGic? CHANnel<N>

The query returns the logic state definition for the specified source.

<N> N is the channel number, an integer in the range of 1 - 4.

Returned Format [:TRIGger:STATe:LOGic {CHANnel<N> | DIGital<M>},] {LOW | HIGH
| DONTcare | RISing | FALLing}<NL>

29-63

Trigger Commands
STATe:LTYPe

STATe:LTYPe

Command :TRIGger:STATe:LTYPe {AND | NAND}

This command defines the state trigger logic type. If the logic type is set to AND,
then a trigger is generated on the edge of the clock when the input waveforms match
the pattern specified by the :TRIGger:STATe:LOGic command. If the logic type is
set to NAND, then a trigger is generated on the edge of the clock when the input
waveforms do not match the specified pattern.

Query :TRIGger:STATe:LTYPe?

The query returns the currently specified state trigger logic type.

Returned Format [:TRIGger:STATe:LTYPe] {AND | NAND}<NL>

29-64

Trigger Commands
STATe:SLOPe

STATe:SLOPe

Command :TRIGger:STATe:SLOPe {RISing | FALLing | EITHer}

This command specifies the edge of the clock that is used to generate a trigger. The
waveform source used for the clock is selected by using the :TRIGger:STATe:CLOCk
command.

Query :TRIGger:STATe:SLOPe?

The query returns the currently defined slope for the clock in State Trigger Mode.

Returned Format [:TRIGger:STATe:SLOPe] {RISing | FALLing | EITHer}<NL>

29-65

Trigger Commands
TIMeout:CONDition

TIMeout:CONDition

Command :TRIGger:TIMeout:CONDition {HIGH | LOW | UNCHanged}

This command sets the condition used for the timeout trigger.

HIGH Trigger when the waveform has been high for a period time longer than the time value
which is set by the TRIGger:TIMeout:TIME command.

LOW Trigger when the waveform has been low for a period time longer than the time value
which is set by the TRIGger:TIMeout:TIME command.

UNCHanged Trigger when the waveform has not changed state for a period time longer than the
time value which is set by the TRIGger:TIMeout:TIME command.

Query :TRIGger:TIMeout:CONDition?

The query returns the currently defined trigger condition for the timeout trigger.

Returned Format [:TRIGger:TIMeout:CONDition] {HIGH | LOW | UNCHanged}<NL>

29-66

Trigger Commands
TIMeout:SOURce

TIMeout:SOURce

Command :TRIGger:TIMeout:SOURce CHANnel<N>

This command specifies the channel source used to trigger the oscilloscope with the
timeout trigger.

<N> An integer, 1 - 4.

Query :TRIGger:TIMeout:SOURce?

The query returns the currently defined channel source for the timeout trigger.

Returned Format [:TRIGger:TIMeout:SOURce] CHANnel<N><NL>

29-67

TIMeout:TIME

Command :TRIGger:TIMeout:TIME <time>

This command lets you look for transition violations that are greater than or less than
the time specified.

<time> The time for the timeout trigger, in seconds.

Query :TRIGger:TIMeout:TIME?

The query returns the currently defined time for the trigger trigger.

Returned Format [:TRIGger:TIMeout:TIME] <time><NL>

29-68

TRANsition:DIRection

Command :TRIGger:TRANsition:DIRection {GTHan | LTHan}

This command lets you look for transition violations that are greater than or less than
the time specified by the :TRIGger:TRANsition:TIME command.

Query :TRIGger:TRANsition:DIRection?

The query returns the currently defined direction for the trigger transition violation.

Returned Format [:TRIGger:TRANsition:DIRection] {GTHan | LTHan}]<NL>

29-69

Trigger Commands
TRANsition:SOURce

TRANsition:SOURce

Command :TRIGger:TRANsition:SOURce CHANnel<N>

The transition source command lets you find any edge in your waveform that violates
a rise time or fall time specification. The oscilloscope finds a transition violation
trigger by looking for any pulses in your waveform with rising or falling edges that
do not cross two voltage levels in the amount of time you have specified.

<N> An integer, 1 - 4.

Query :TRIGger:TRANsition:SOURce?

The query returns the currently defined transition source for the trigger transition
violation.

Returned Format [:TRIGger:TRANsition:SOURce] CHANnel<N><NL>

29-70

Trigger Commands
TRANsition:TIME

TRANsition:TIME

Command :TRIGger:TRANsition:TIME <time>

This command lets you look for transition violations that are greater than or less than
the time specified.

<time> The time for the trigger violation transition, in seconds.

Query :TRIGger:TRANsition:TIME?

The query returns the currently defined time for the trigger transition violation.

Returned Format [:TRIGger:TRANsition:TIME] <time><NL>

29-71

Trigger Commands
TRANsition:TYPE

TRANsition:TYPE

Command :TRIGger:TRANsition:TYPE {RISetime | FALLtime}

This command lets you select either a rise time or fall time transition violation trigger
event.

Query :TRIGger:TRANsition:TYPE?

The query returns the currently defined transition type for the trigger transition
violation.

Returned Format [:TRIGger:TRANsition:TYPE] {RISetime | FALLtime}<NL>

29-72

Trigger Commands
TV:LINE

TV:LINE

Command :TRIGger:TV:LINE <line_number>

The :TRIGger:TV:LINE command selects the horizontal line that you want to
examine. The allowable line number entry depends on the :TRIGger:TV:MODE
selected. Once the vertical sync pulse of the selected field is received, the trigger is
delayed by the number of lines specified.

<line_number> Horizontal line number as shown below.

Query :TRIGger:TV:LINE?

The query returns the current line number.

Returned Format [:TRIGger:TV:LINE] <line_number><NL>

Video Standard Field 1 Field 2 Alternate Field

NTSC/PAL-M 1 to 263 1 to 262 1 to 262

PAL/SECAM 1 to 313 314 to 625 1 to 312

EDTV/HDTV Line numbers

EDTV 480p/60 1 to 525

EDTV 576p/50 1 to 625

HDTV 720p/60 1 to 750

HDTV 720p/50 1 to 750

HDTV 1080i/60 1 to 1125

HDTV 1080i/50 1 to 1125

HDTV1080p/60 1 to 1125

HDTV 1080p/50 1 to 1125

HDTV 1080p/30 1 to 1125

HDTV 1080p/25 1 to 1125

HDTV 1080p/24 1 to 1125

29-73

TV:MODE

Command :TRIGger:TV:MODE {AFIelds | ALINes | ALTernate |
FIElds1 | FIElds2 | LINE}

The :TRIGger:TV:MODE command determines which portion of the video waveform
is used to trigger.

Query :TRIGger:TV:MODE?

The query returns the current TV trigger mode.

Returned Format [:TRIGger:TV:MODE] {AFIelds | ALINes | ALTernate | FIElds1 |
FIElds2 | LINE}<NL>

29-74

Trigger Commands
TV:POLarity

TV:POLarity

Command :TRIGger:TV:POLarity {NEGative | POSitive}

The :TRIGger:TV:POLarity command specifies the vertical sync pulse polarity for
the selected field used during TV mode triggering.

Query :TRIGger:TV:POLarity?

The query returns the currently selected sync pulse polarity.

Returned Format [:TRIGger:TV:POLarity] {NEGative | POSitive}<NL>

29-75

TV:SOURce

Command :TRIGger:TV:SOURce CHANnel<N>

The :TRIGger:TV:SOURce command selects the source for the TV mode triggering.
This is the source that will be used for subsequent :TRIGger:TV commands and
queries.

<N> An integer, 1 - 4.

Query :TRIGger:TV:SOURce?

The query returns the currently selected standard TV trigger mode source.

Returned Format [:TRIGger:TV:SOURce] CHANnel<N>NL>

29-76

TV:STANdard

Command :TRIGger:TV:STANdard {I1080L60HZ | I1080L50HZ |
L525 | L625 | P480L60HZ | P576L50HZ | P720L60HZ |
P720L50HZ | P1080L60HZ | P1080L50HZ | P1080L30HZ |
P1080L25HZ | P1080L24HZ | UDTV}

The TRIGger:TV:STANdard command sets triggering to one of the standard video
types. There is also a user defined TV type that can be used to set the triggering to
one of the non-standard types of video.

Query :TRIGger:TV:STANdard?

The query returns the currently selected video standard.

Returned Format [:TRIGger:TV:STANdard] {I1080L60HZ | I1080L50HZ | L525 | L625 |
P480L60HZ | P576L50HZ | P720L60HZ | P720L50HZ | P1080L60HZ |
P1080L50HZ | P1080L40HZ | P1080L30HZ | P1080L25HZ |
P1080L24HZ | UDTV}<NL>

29-77

Trigger Commands
TV:UDTV:ENUMber

TV:UDTV:ENUMber

Command :TRIGger:TV:UDTV:ENUMber <count>

The :TRIGger:TV:UDTV:ENUMber command specifies the number of events
(horizontal sync pulses) to delay after arming the trigger before looking for the trigger
event. Specify conditions for arming the trigger using:
TRIGger:TV:UDTV:PGTHan, and
TRIGger:TV:UDTV:POLarity.

<count> An integer for the number of events to delay. Allowable values range from 1 to
16,000,000.

Query :TRIGger:TV:UDTV:ENUMber?

The query returns the currently programmed count value.

Returned Format [:TRIGger:TV:UDTV:ENUMber] <count><NL>

29-78

Trigger Commands
TV:UDTV:HSYNc

TV:UDTV:HSYNc

Command :TRIGger:TV:UDTV:HSYNc {ON | 1} | {OFF | 0}}

This command enables the horizontal sync mode of triggering.

Query :TRIGger:TV:UDTV:HSYNc?

The query returns the current state of the horizontal sync mode of triggering.

Returned Format [:TRIGger:TV:UDTV:HSYNc] {1 | 0}<NL>

29-79

Trigger Commands
TV:UDTV:HTIMe

TV:UDTV:HTIMe

Command :TRIGger:TV:UDTV:HTIMe <time>

The :TRIGger:TV:UDTV:HTIMe command sets the time that a sync pulse must be
present to be considered a valid sync pulse.

<time> A real number that is the time width for the sync pulse.

Query :TRIGger:TV:UDTV:HTIMe?

The query returns the currently defined time for the sync pulse width.

Returned Format [:TRIGger:TV:UDTV:HTIMe] <time><NL>

29-80

Trigger Commands
TV:UDTV:PGTHan

TV:UDTV:PGTHan

Command :TRIGger:TV:UDTV:PGTHan <lower_limit>

The :TRIGger:TV:UDTV:PGTHan (Present Greater THan) command specifies the
minimum pulse width of the waveform used to arm the trigger used during user-
defined trigger mode.

<lower_limit> Minimum pulse width (time >), from 5 ns to 9.9999999 s.

Query :TRIGger:TV:UDTV:PGTHan?

The query returns the currently selected minimum pulse width.

Returned Format [:TRIGger:TV:UDTV:PGTHan] <lower_limit><NL>

29-81

TV:UDTV:POLarity

Command :TRIGger:TV:UDTV:POLarity {NEGative | POSitive}

The :TRIGger:TV:UDTV:POLarity command specifies the polarity for the sync pulse
used to arm the trigger in the user-defined trigger mode.

Query :TRIGger:TV:UDTV:POLarity?

The query returns the currently selected UDTV sync pulse polarity.

Returned Format [:TRIGger:TV:UDTV:POLarity] {NEGative | POSitive}<NL>

29-82

WINDow:CONDition

Command :TRIGger:WINDow:CONDition {ENTer | EXIT |
INSide [,{GTHan | LTHan}] |
OUTSide [,{GTHan | LTHan}]}

This command describes the condition applied to the trigger window to actually
generate a trigger.

Query :TRIGger:WINDow:CONDition?

The query returns the currently defined trigger condition.

Returned Format [:TRIGger:WINDow:CONDition] {ENTer | EXIT |
INSide,{GTHan | LTHan} | OUTSide,{GTHan | LTHan}}<NL>

29-83

WINDow:SOURce

Command :TRIGger:WINDow:SOURce CHANnel<N>

This command specifies the channel source used to trigger the oscilloscope with the
window trigger.

<N> An integer, 1 - 4.

Query :TRIGger:WINDow:SOURce?

The query returns the currently defined channel source for the window trigger.

Returned Format [:TRIGger:WINDow:SOURce] CHANnel<N><NL>

29-84

Trigger Commands
WINDow:TIME

WINDow:TIME

Command :TRIGger:WINDow:TIME <time>

This command lets you look for transition violations that are greater than or less than
the time specified.

<time> The time for the trigger violation transition, in seconds.

Query :TRIGger:WINDow:TIME?

The query returns the currently defined time for the trigger window timeout.

Returned Format [:TRIGger:WINDow:TIME] <time><NL>

29-85

Trigger Commands
WINDow:TPOint

WINDow:TPOint

Command :TRIGger:WINDow:TPOint {BOUNdary | TIMeout}

This command specifies whether the window trigger should occur at the boundary of
the window or at a specified timeout period.

Query :TRIGger:WINDow:TPOint?

The query returns the currently defined trigger on point for the pulse width trigger.

Returned Format [:TRIGger:PWIDth:TPOint] {BOUNdary | TIMeout}<NL>

29-86

Trigger Commands
WINDow:TPOint

Advanced COMM Trigger Mode and Commands

Use the COMM Trigger Mode to find a serial pattern of bits in a waveform. The
COMM Trigger Mode is primarily used to find an isolated logically one bit in a
waveform for mask testing applications. The pattern is defined by the standards used
by the telecommunication and data communication industries. Mask testing is used
to verify a waveform meets industrial standards which guarantees that equipment
made by different manufacturers will work together.

Set the Mode Before Executing Commands
Before you can execute the :TRIGger:ADVanced:COMMunications
commands, mask testing must be enabled at least one time. The
:MTESt:ENABle command enables or disables mask testing. Then you can
set the mode by entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE COMM

To query the oscilloscope for the advanced trigger mode, enter:

:TRIGger:ADVanced:MODE?

The :TRIGger:ADVanced:COMM commands define the Communications
Trigger Mode. As described in the following commands, you set up the
:TRIGger:ADVanced:COMM commands with the following commands and
queries.

• BWIDth
• ENCode
• LEVel
• PATTern
• POLarity

29-87

Trigger Commands
WINDow:TPOint

• SOURce

29-88

Trigger Commands
COMM:BWIDth

COMM:BWIDth

Command :TRIGger:ADVanced:COMM:BWIDth <bwidth_value>

The :TRIGger:ADVanced:COMM:BWIDth command is used to set the width of a bit
for your waveform. The bit width is usually defined in the mask standard for your
waveform.

<bwidth_value> A real number that represents the width of a bit.

Query :TRIGger:ADVanced:COMM:BWIDth?

The query returns the current bit width.

Returned Format [:TRIGger:ADVanced:COMM:BWIDth] <bwidth_value><NL>

29-89

Trigger Commands
COMM:ENCode

COMM:ENCode

Command :TRIGger:ADVanced:COMM:ENCode {RZ | NRZ}

This :TRIGger:ADVanced:COMM:ENCode command sets the type of waveform
encoding for your waveform. You should use NRZ for CMI type waveforms and RZ
for all other type of waveforms.

Query :TRIGger:ADVanced:COMM:ENCode?

The :TRIGger:ADVanced:COMM:ENCode? query returns the current value of
encoding

Returned Format [:TRIGger:ADVanced:COMM:ENCode] {RZ | NRZ}<NL>

29-90

Trigger Commands
COMM:LEVel

COMM:LEVel

Command :TRIGger:ADVanced:COMM:LEVel CHANnel<N>,<level>

The :TRIGger:ADVanced:COMM:LEVel command sets the voltage level
used to determine a logic 1 from a logic 0 for the communication pattern.

<N> An integer, 1-4.

<level> A real number which is the logic level voltage.

Query :TRIGger:ADVanced:COMM:LEVel? CHANnel<N>

The :TRIGger:ADVanced:COMM:LEVel? query returns the current level
for the communication pattern.

Returned Format [:TRIGger:ADVanced:COMM:LEVel CHANnel<N>,]<level><NL>

29-91

Trigger Commands
COMM:PATTern

COMM:PATTern

Command :TRIGger:ADVanced:COMM:PATTern
<bit>[,<bit[,<bit[,<bit[,<bit[,<bit]]]]]

The :TRIGger:ADVanced:COMM:PATTern command sets the pattern used for
triggering the oscilloscope when in communication trigger mode. The pattern can be
up to 6 bits long. For NRZ type waveforms with positive polarity, there must be at
least one logic 0 to logic 1 transition in the pattern. For NRZ waveforms with negative
polarity there must be at least one logic 1 to logic 0 transition in the pattern. For RZ
type waveforms the pattern must have at least one logic 1 bit for positive polarity.
For RZ type waveforms the pattern must have at least one logic -1 bit for negative
polarity.

<bit> A 1, -1, or 0.

Query :TRIGger:ADVanced:COMM:PATTern?

The :TRIGger:ADVanced:COMM:PATTern? query returns the current
communication trigger pattern.

Returned Format [:TRIGger:ADVanced:COMM:PATTern] <pattern><NL>

<pattern> A string of up to 6 characters.

29-92

Trigger Commands
COMM:POLarity

COMM:POLarity

Command :TRIGger:ADVanced:COMM:POLarity {POSitive |
NEGative}

The :TRIGger:ADVanced:COMM:POLarity command directly controls
the trigger slope used for communication trigger. When set to a positive value, the
rising edge of a pulse or waveform is used to trigger the oscilloscope. When set to a
negative value, the falling edge of a pulse or waveform is used.
The polarity setting is also used to check for valid patterns. If you are trying to trigger
on an isolated 1 pattern, you should set the polarity to positive. If you are trying to
trigger on an isolated -1 pattern, you should set the polarity to negative.

Query :TRIGger:ADVanced:COMM:POLarity?

The :TRIGger:ADVanced:COMM:POLarity? query returns the current
setting for polarity.

Returned Format [:TRIGger:ADVanced:COMM:POLarity} {1|0}<NL>

29-93

Trigger Commands
COMM:SOURce

COMM:SOURce

Command :TRIGger:ADVanced:COMM:SOURce CHANnel<N>

The :TRIGger:ADVanced:COMM:SOURce command selects the channel used for
the communication trigger.

<N> An integer, 1-4.

Query :TRIGger:ADVanced:COMM:SOURce?

The :TRIGger:ADVanced:COMM:SOURce? query returns the currently
selected communication trigger source.

Returned Format [:TRIGger:ADVanced:COMM:SOURce] CHANnel<N><NL>

29-94

Trigger Commands
COMM:SOURce

Advanced Pattern Trigger Mode and Commands

Logic triggering is similar to the way that a logic analyzer captures data. This
mode is useful when you are looking for a particular set of ones and zeros on
a computer bus or control lines. You determine which channels the
oscilloscope uses to form the trigger pattern. Because you can set the voltage
level that determines a logic 1 or a logic 0, any logic family that you are
probing can be captured.

There are two types of logic triggering: Pattern and State. The difference
between pattern and state triggering modes is that state triggering uses one of
the oscilloscope channels as a clock.

Use pattern triggering to trigger the oscilloscope using more than one channel
as the trigger source. You can also use pattern triggering to trigger on a pulse
of a given width.

The Pattern Trigger Mode identifies a trigger condition by looking for a
specified pattern. A pattern is a logical combination of the channels. Each
channel can have a value of High (H), Low (L) or Don’t Care (X). A value
is considered a High when your waveform's voltage level is greater than its
trigger level, and a Low when the voltage level is less than its trigger level.
If a channel is set to Don’t Care, it is not used as part of the pattern criteria.

One additional qualifying condition determines when the oscilloscope triggers
once the pattern is found. The :PATTern:CONDition command has five
possible ways to qualify the trigger:

Entered The oscilloscope will trigger on the edge of the source that makes the pattern
true.

Exited The oscilloscope will trigger on the edge of the source that makes the pattern
false.

Present > The oscilloscope will trigger when the pattern is present for greater than the
time that you specify. An additional parameter allows the oscilloscope to
trigger when the pattern goes away or when the time expires.

29-95

Trigger Commands
COMM:SOURce

Present < The oscilloscope will trigger when the pattern is present for less than the time
that you specify.

Range The oscilloscope will trigger on the edge of the waveform that makes the
pattern invalid as long as the pattern is present within the range of times that
you specify.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise
Reject).

Set the Mode Before Executing Commands
Before you can execute the :TRIGger:ADVanced:PATTern commands, set
the mode by entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE PATTern

To query the oscilloscope for the advanced trigger mode, enter:

:TRIGger:ADVanced:MODE?

The :TRIGger:ADVanced:PATTern commands define the conditions for the
Pattern Trigger Mode. As described in the following commands, you set up
the :TRIGger:ADVanced:PATTern commands with the following commands
and queries:

• CONDition
• LOGic
• THReshold

29-96

Trigger Commands
PATTern:CONDition

PATTern:CONDition

Command :TRIGger:ADVanced:PATTern:CONDition {ENTered |
EXITed |
{GT,<time>[,PEXits|TIMeout]} |
{LT,<time>} |
{RANGe,<gt_time>,<lt_time>}}

This command describes the condition applied to the trigger pattern to actually
generate a trigger.

<gt_time> The minimum time (greater than time) for the trigger pattern, from 10 ns to 9.9999999
s.

<lt_time> The maximum time (less than time) for the trigger pattern, from 15 ns to 10 s.

<time> The time condition, in seconds, for the pattern trigger, from 1.5 ns to 10 s.

When using the GT (Present >) parameter, the PEXits (Pattern Exits) or the TIMeout
parameter controls when the trigger is generated.

Query :TRIGger:ADVanced:PATTern:CONDition?

The query returns the currently defined trigger condition.

Returned Format [:TRIGger:ADVanced:PATTern:CONDition] {ENTered|EXITed |
{GT,<time>[,PEXits|TIMeout]} | {LT,<time>} | {RANGe,<gt_time>,
<lt_time>}}<NL>

29-97

Trigger Commands
PATTern:LOGic

PATTern:LOGic

Command :TRIGger:ADVanced:PATTern:LOGic {{CHANnel<N> |
<channel_list> |
DIGital<M>},{HIGH|LOW|DONTcare|RISing|FALLing}}

This command defines the logic criteria for a selected channel.

<N> An integer, 1 - 4.

<M> An integer, 0 - 15. The digital channels are only available on the MSO oscilloscopes
or DSO models with the MSO license installed.

<channel_list> The channel range is from 0 to 15 in the following format.

Query :TRIGger:ADVanced:PATTern:LOGic? {CHANnel<N> |
<channel_list> | DIGital<M>}

The query returns the current logic criteria for a selected channel.

Returned Format [:TRIGger:ADVanced:PATTern:LOGic {CHANnel<N> | <channel_list>
| DIGital<M>},] {HIGH|LOW|DONTcare|RISing|FALLing}<NL>

(@1,5,7,9) channels 1, 5, 7, and 9 are turned on.

(@1:15) channels 1 through 15 are turned on.

(@1:5,8,14) channels 1 through 5, channel 8, and channel 14 are turned on.

29-98

Trigger Commands
:PATTern:THReshold:LEVel

:PATTern:THReshold:LEVel

Command :TRIGger:ADVanced:PATTern:THReshold:LEVel
{CHANnel<N>},<level>

The :TRIGger:ADVanced:PATTern:THReshold:LEVel command specifies the
trigger level on the specified channel for the trigger source. Only one trigger level is
stored in the oscilloscope for each channel. This level applies to the channel
throughout the trigger dialogs (Edge, Glitch, and Advanced). This level also applies
to all the High Threshold (HTHReshold) values in the Advanced Violation menus.

<N> An integer, 1 - 4.

<level> A real number for the trigger level on the specified channel, External Trigger, or
Auxilliary Trigger Input.

Query :TRIGger:ADVanced:PATTern:THReshold:LEVel?
{CHANnel<N>}

The query returns the specified channel’s trigger level.

Returned Format [:TRIGger:ADVanced:PATTern:THReshold:LEVel {CHANnel<N>},]
<level><NL>

29-99

Trigger Commands
:PATTern:THReshold:POD<N>

:PATTern:THReshold:POD<N>

Command :TRIGger:ADVanced:PATTern:THReshold:POD<N> {CMOS50
| CMOS30 | CMOS25 | ECL | PECL | TTL | <value>}

The TRIGger:ADVanced:PATTern:THReshold:POD<N> command sets the logic
threshold value for the selected pod. POD1 is digital channels D0 through D7 and
POD2 is digital channels D8 through D15. The threshold is used for triggering
purposes and for displaying the digital data as high (above the threshold) or low (below
the threshold). The voltage values for the predefined thresholds are:

CMOS50=2.5 V
CMOS30=1.65 V
CMOS25=1.25 V
ECL=-1.3 V
PECL=3.7 V
TTL=1.4 V

<N> An integer, 1 - 2.

<value> A real number representing the voltage value which distinguishes a 1 logic level from
a 0 logic level. Waveform voltages greater than the threshold are 1 logic levels while
waveform vlotages less than the threshold are 0 logic levels.

Query :TRIGger:ADVanced:PATTern:THREShold:POD<N>?

The :TRIGger:ADVanced:PATTern:THReshold:POD<N>? query returns the
threshold value for the specified pod.

Return format [:TRIGger:ADVanged:PATTern:THReshold:POD<N>] {CMOS50 | CMOS30 |
CMOS25 | ECL | PECL | TTL | <value>}<NL>

This command is only valid for the MSO oscilloscopes.

29-100

Trigger Commands
:PATTern:THReshold:POD<N>

Advanced State Trigger Mode and Commands

Logic triggering is similar to the way that a logic analyzer captures data. This
mode is useful when you are looking for a particular set of ones and zeros on
a computer bus or control lines. You determine which channels the
oscilloscope uses to form the trigger pattern. Because you can set the voltage
level that determines a logic 1 or a logic 0, any logic family that you are
probing can be captured.

There are two types of logic triggering: Pattern and State. The difference
between pattern and state triggering modes is that state triggering uses one of
the oscilloscope channels as a clock.

Use state triggering when you want the oscilloscope to use several channels
as the trigger source, with one of the channels being used as a clock waveform.

The State trigger identifies a trigger condition by looking for a clock edge on
one channel and a pattern on the remaining channels. A pattern is a logical
combination of the remaining channels. Each channel can have a value of
High (H), Low (L) or Don’t Care (X). A value is considered a High when
your waveform's voltage level is greater than the trigger level and a Low when
the voltage level is less than the trigger level. If a channel is set to Don’t Care,
it is not used as part of the pattern criteria. You can select the clock edge as
either rising or falling.

The logic type control determines whether or not the oscilloscope will trigger
when the specified pattern is found on a clock edge. When AND is selected,
the oscilloscope will trigger on a clock edge when input waveforms match the
specified pattern. When NAND is selected, the oscilloscope will trigger when
the input waveforms are different from the specified pattern and a clock edge
occurs.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise
Reject).

Set the Mode Before Executing Commands

29-101

Trigger Commands
:PATTern:THReshold:POD<N>

Before you can execute the :TRIGger:ADVanced:STATe commands, set the
mode by entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE STATe

To query the oscilloscope for the advanced trigger mode, enter:

:TRIGger:ADVanced:MODE?

The :TRIGger:ADVanced:STATe commands define the conditions for the
State Trigger Mode. As described in the following commands, you set up the
:TRIGger:ADVanced:STATe commands with the following commands and
queries:

• CLOCk
• LOGic
• LTYPe
• SLOPe
• THReshold

29-102

Trigger Commands
STATe:CLOCk

STATe:CLOCk

Command :TRIGger:ADVanced:STATe:CLOCk {CHANnel<N> |
DIGital<M> | DONTcare | <digital_channel>}

This command selects the source for the clock waveform in the State Trigger Mode.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<M> An integer, 0 - 15. The digital channels are only available on the MSO oscilloscopes
or DSO models with the MSO license installed.

Query :TRIGger:ADVanced:STATe:CLOCk?

The query returns the currently selected clock source.

Returned Format [:TRIGger:ADVanced:STATe:CLOCk] {CHANnel<N>|DIGital<M>}<NL>

29-103

Trigger Commands
STATe:LOGic

STATe:LOGic

Command :TRIGger:ADVanced:STATe:LOGic {{CHANnel<N> |
<channel_list> |
DIGital<M>},{LOW|HIGH|DONTcare|RISing|
FALLing}}

This command defines the logic state of the specified source for the state pattern. The
command produces a settings conflict on a channel that has been defined as the clock.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<channel_list> The channel range is from 0 to 15 in the following format.

<M> An integer, 0 - 15. The digital channels are only available on the MSO oscilloscopes
or DSO models with the MSO license installed.

Query :TRIGger:ADVanced:STATe:LOGic? {CHANnel<N> |
<channel_list> | DIGital<M>}

The query returns the logic state definition for the specified source.

<N> N is the channel number, an integer in the range of 1 - 4.

Returned Format [:TRIGger:ADVanced:STATe:LOGic
{CHANnel<N>|<channel_list>|DIGital<M>},]
{LOW|HIGH|DONTcare|RISing|FALLing}<NL>

(@1,5,7,9) channels 1, 5, 7, and 9 are turned on.

(@1:15) channels 1 through 15 are turned on.

(@1:5,8,14) channels 1 through 5, channel 8, and channel 14 are turned on.

29-104

Trigger Commands
STATe:LTYPe

STATe:LTYPe

Command :TRIGger:ADVanced:STATe:LTYPe {AND|NAND}

This command defines the state trigger logic type. If the logic type is set to AND,
then a trigger is generated on the edge of the clock when the input waveforms match
the pattern specified by the :TRIGger:ADVanced:STATe:LOGic command. If the
logic type is set to NAND, then a trigger is generated on the edge of the clock when
the input waveforms do not match the specified pattern.

Query :TRIGger:ADVanced:STATe:LTYPe?

The query returns the currently specified state trigger logic type.

Returned Format [:TRIGger:ADVanced:STATe:LTYPe] {AND|NAND}<NL>

29-105

Trigger Commands
STATe:SLOPe

STATe:SLOPe

Command :TRIGger:ADVanced:STATe:SLOPe {POSitive|NEGative}

This command specifies the edge of the clock that is used to generate a trigger. The
waveform source used for the clock is selected by using the
:TRIGger:ADVanced:STATe:CLOCk command.

Query :TRIGger:ADVanced:STATe:SLOPe?

The query returns the currently defined slope for the clock in State Trigger Mode.

Returned Format [:TRIGger:ADVanced:STATe:SLOPe] {POSitive|NEGative}<NL>

29-106

Trigger Commands
:STATe:THReshold:LEVel

:STATe:THReshold:LEVel

Command :TRIGger:ADVanced:STATe:THReshold:LEVel
{CHANnel<N> | DIGital<M>},<level>

The :TRIGger:ADVanced:STATe:THReshold:LEVel command specifies the trigger
level on the specified channel for the trigger source. Only one trigger level is stored
in the oscilloscope for each channel. This level applies to the channel throughout the
trigger dialogs (Edge, Glitch, and Advanced). This level also applies to all the High
Threshold (HTHReshold) values in the Advanced Violation menus.

<N> An integer, 1 - 4.

<M> An integer, 0 - 15. The digital channels are only available on the MSO oscilloscopes
or DSO models with the MSO license installed.

<level> A real number for the trigger level on the specified channel, External Trigger, or
Auxilliary Trigger Input.

Query :TRIGger:ADVanced:STATe:THReshold:LEVel?
{CHANnel<N> | DIGital<M>}

The query returns the specified channel’s trigger level.

Returned Format [:TRIGger:ADVanced:STATe:THReshold:LEVel {CHANnel<N> |
DIGital<M>},] <level><NL>

29-107

Advanced Delay By Event Mode and Commands

You can set the delay mode to delay by events or time. Use Delay By Event
mode to view pulses in your waveform that occur a number of events after a
specified waveform edge. Infiniium Oscilloscopes identify a trigger by
arming on the edge you specify, counting a number of events, then triggering
on the specified edge.

Arm On Use Arm On to set the source, level, and slope for arming the trigger circuitry.
When setting the arm level for your waveform, it is usually best to choose a
voltage value that is equal to the voltage value at the mid point of your
waveform. For example, if you have a waveform with a minimum value of 0
(zero) volts and a maximum value of 5 volts, then 2.5 volts is the best place
to set your arm level. The reason this is the best choice is that there may be
some ringing or noise at both the 0 volt and 5 volt levels that can cause false
triggers.

When you adjust the arm level control, a horizontal dashed line with a T on
the right-hand side appears showing you where the arm level is with respect
to your waveform. After a period of time the dashed line will disappear. To
redisplay the line, adjust the arm level control again, or activate the Trigger
dialog.

Delay By Event Use Delay By Event to set the source, level, and edge to define an event. When
setting the event level for your waveform, it is usually best to choose a voltage
value that is equal to the voltage value at the mid point of your waveform. For
example, if you have a waveform with a minimum value of 0 (zero) volts and
a maximum value of 5 volts, then 2.5 volts is the best place to set your event
level. The reason this is the best choice is that there may be some ringing or
noise at both the 0 volt and 5 volt levels that can cause false triggers.

Event Use Event to set the number of events (edges) that must occur after the
oscilloscope is armed until it starts to look for the trigger edge.

Trigger On Use Trigger On to set the trigger source and trigger slope required to trigger
the oscilloscope. Each source can have only one level, so if you are arming
and triggering on the same source, only one level is used.

29-108

Set the Mode Before Executing Commands
Before you can execute the :TRIGger:ADVanced:DELay commands, set the
mode by entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE DELay

The ADVanced DELay commands define the conditions for the Delay Trigger
Mode. The Delay By Events Mode lets you view pulses in your waveform
that occur a number of events after a specified waveform edge. After entering
the commands above, to select Delay By Events Mode, enter:

:TRIGger:ADVanced:DELay:MODE EDLY

Then you can use the Event Delay (EDLY) commands and queries for ARM,
EVENt, and TRIGger on the following pages.

To query the oscilloscope for the advanced trigger mode or the advanced
trigger delay mode, enter:

:TRIGger:ADVanced:MODE? or
:TRIGger:ADVanced:DELay:MODE?

29-109

Trigger Commands
EDLY:ARM:SOURce

EDLY:ARM:SOURce

Command :TRIGger:ADVanced:DELay:EDLY:ARM:SOURce {CHANnel<N>
| DIGital<M>}

This command sets the Arm On source for arming the trigger circuitry when the
oscilloscope is in the Delay By Event trigger mode.

<N> An integer, 1 - 4.

<M> An integer, 0 - 15. The digital channels are only available on the MSO oscilloscopes
or DSO models with the MSO license installed.

Query :TRIGger:ADVanced:DELay:EDLY:ARM:SOURce?

The query returns the currently defined Arm On source for the Delay By Event trigger
mode.

Returned Format [:TRIGger:ADVanced:DELay:EDLY:ARM:SOURce] {CHANnel<N> |
DIGital<M>}<NL>

29-110

Trigger Commands
EDLY:ARM:SLOPe

EDLY:ARM:SLOPe

Command :TRIGger:ADVanced:DELay:EDLY:ARM:SLOPe
{NEGative|POSitive}

This command sets a positive or negative slope for arming the trigger circuitry when
the oscilloscope is in the Delay By Event trigger mode.

Query :TRIGger:ADVanced:DELay:EDLY:ARM:SLOPe?

The query returns the currently defined slope for the Delay By Event trigger mode.

Returned Format [:TRIGger:ADVanced:DELay:EDLY:ARM:SLOPe]
{NEGative|POSitive}<NL>

29-111

Trigger Commands
EDLY:EVENt:DELay

EDLY:EVENt:DELay

Command :TRIGger:ADVanced:DELay:EDLY:EVENt:DELay
<edge_number>

This command sets the event count for a Delay By Event trigger event.

<edge_num> An integer from 0 to 16,000,000 specifying the number of edges to delay.

Query :TRIGger:ADVanced:DELay:EDLY:EVENt:DELay?

The query returns the currently defined number of events to delay before triggering
on the next Trigger On condition in the Delay By Event trigger mode.

Returned Format [:TRIGger:ADVanced:DELay:EDLY:EVENt:DELay] <edge_number><NL>

29-112

Trigger Commands
EDLY:EVENt:SOURce

EDLY:EVENt:SOURce

Command :TRIGger:ADVanced:DELay:EDLY:EVENt:SOURce
{CHANnel<N> | DIGital<M>}

This command sets the Event source for a Delay By Event trigger event.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<M> An integer, 0 - 15. The digital channels are only available on the MSO oscilloscopes
or DSO models with the MSO license installed.

Query :TRIGger:ADVanced:DELay:EDLY:EVENt:SOURce?

The query returns the currently defined Event source in the Delay By Event trigger
mode.

Returned Format [:TRIGger:ADVanced:DELay:EDLY:EVENt:SOURce] {CHANnel<N> |
DIGital<M>}<NL>

29-113

Trigger Commands
EDLY:EVENt:SLOPe

EDLY:EVENt:SLOPe

Command :TRIGger:ADVanced:DELay:EDLY:EVENt:SLOPe
{NEGative|POSitive}

This command sets the trigger slope for the Delay By Event trigger event.

Query :TRIGger:ADVanced:DELay:EDLY:EVENt:SLOPe?

The query returns the currently defined slope for an event in the Delay By Event
trigger mode.

Returned Format [:TRIGger:ADVanced:EDLY:EVENt:SLOPe] {NEGative|POSitive}<NL>

29-114

EDLY:TRIGger:SOURce

Command :TRIGger:ADVanced:DELay:EDLY:TRIGger:SOURce
{CHANnel<N> | DIGital<M>}

This command sets the Trigger On source for a Delay By Event trigger event.

 <N> An integer, 1 - 4.

<M> An integer, 0 - 15. The digital channels are only available on the MSO oscilloscopes
or DSO models with the MSO license installed.

Query :TRIGger:ADVanced:DELay:EDLY:TRIGger:SOURce?

The query returns the currently defined Trigger On source for the event in the Delay
By Event trigger mode.

Returned Format [:TRIGger:ADVanced:DELay:EDLY:TRIGger:SOURce] {CHANnel<N> |
DIGital<M>}<NL>

29-115

Trigger Commands
EDLY:TRIGger:SLOPe

EDLY:TRIGger:SLOPe

Command :TRIGger:ADVanced:DELay:EDLY:TRIGger:SLOPe
{NEGative|POSitive}

This command sets the trigger slope for the Delay By Event trigger event.

Query :TRIGger:ADVanced:DELay:EDLY:TRIGger:SLOPe?

The query returns the currently defined slope for an event in the Delay By Event
trigger mode.

Returned Format [:TRIGger:ADVanced:DELay:EDLY:TRIGger:SLOPe]
{NEGative|POSitive}<NL>

29-116

Trigger Commands
EDLY:TRIGger:SLOPe

Advanced Delay By Time Mode and Commands

You can set the delay mode to delay by events or time. Use Delay By Time
mode to view pulses in your waveform that occur a long time after a specified
waveform edge. The Delay by Time identifies a trigger condition by arming
on the edge you specify, waiting a specified amount of time, then triggering
on a specified edge. This can be thought of as two-edge triggering, where the
two edges are separated by a selectable amount of time.

It is also possible to use the Horizontal Position control to view a pulse some
period of time after the trigger has occurred. The problem with this method
is that the further the pulse is from the trigger, the greater the possibility that
jitter will make it difficult to view. Delay by Time eliminates this problem
by triggering on the edge of interest.

Arm On Use Arm On to set the source, level, and slope for the arming condition. When
setting the arm level for your waveform, it is usually best to choose a voltage
value that is equal to the voltage value at the mid point of your waveform. For
example, if you have a waveform with a minimum value of 0 (zero) volts and
a maximum value of 5 volts, then 2.5 volts is the best place to set your arm
level. The reason this is the best choice is that there may be some ringing or
noise at both the 0-volt and 5-volt levels that can cause false triggers.

When you adjust the arm level control, a horizontal dashed line with a T on
the right-hand side appears showing you where the arm level is with respect
to your waveform. After a period of time the dashed line will disappear. To
redisplay the line, adjust the arm level control again, or activate the Trigger
dialog.

Delay By Time Use Delay By Time to set the amount of delay time from when the oscilloscope
is armed until it starts to look for the trigger edge. The range is from 30 ns to
160 ms.

Trigger On Use Trigger On to set the source and slope required to trigger the oscilloscope.
Trigger On Level is slaved to Arm On Level.

29-117

Trigger Commands
EDLY:TRIGger:SLOPe

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise
Reject).

Set the Mode Before Executing Commands
Before you can execute the :TRIGger:ADVanced:DELay commands, set the
mode by entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE DELay

The ADVanced DELay commands define the conditions for the Delay Trigger
Mode. The Delay By Time Mode lets you view pulses in your waveform that
occur a specified time after a specified waveform edge. After entering the
commands above, to select Delay By Time Mode, enter:

:TRIGger:ADVanced:DELay:MODE TDLY

Then you can use the Time Delay (TDLY) commands and queries for ARM,
DELay, and TRIGger on the following pages.

To query the oscilloscope for the advanced trigger mode or the advanced
trigger delay mode, enter:

:TRIGger:ADVanced:MODE? or
:TRIGger:ADVanced:DELay:MODE?

29-118

Trigger Commands
TDLY:ARM:SOURce

TDLY:ARM:SOURce

Command :TRIGger:ADVanced:DELay:TDLY:ARM:SOURce {CHANnel<N>
| DIGital<M>}

This command sets the Arm On source for arming the trigger circuitry when the
oscilloscope is in the Delay By Time trigger mode.

<N> An integer, 1 - 4.

<M> An integer, 0 - 15. The digital channels are only available on the MSO oscilloscopes
or DSO models with the MSO license installed.

Query :TRIGger:ADVanced:DELay:TDLY:ARM:SOURce?

The query returns the currently defined channel source for the Delay By Time trigger
mode.

Returned Format [:TRIGger:ADVanced:DELay:TDLY:ARM:SOURce] {CHANnel<N> |
DIGital<M>}<NL>

29-119

Trigger Commands
TDLY:ARM:SLOPe

TDLY:ARM:SLOPe

Command :TRIGger:ADVanced:DELay:TDLY:ARM:SLOPe
{NEGative|POSitive}

This command sets a positive or negative slope for arming the trigger circuitry when
the oscilloscope is in the Delay By Time trigger mode.

Query :TRIGger:ADVanced:DELay:TDLY:ARM:SLOPe?

The query returns the currently defined slope for the Delay By Time trigger mode.

Returned Format [:TRIGger:ADVanced:DELay:TDLY:ARM:SLOPe]
{NEGative|POSitive}<NL>

29-120

Trigger Commands
TDLY:DELay

TDLY:DELay

Command :TRIGger:ADVanced:DELay:TDLY:DELay <delay>

This command sets the delay for a Delay By Time trigger event.

<delay> Time, in seconds, set for the delay trigger, from 5 ns to 10 s.

Query :TRIGger:ADVanced:DELay:TDLY:DELay?

The query returns the currently defined time delay before triggering on the next
Trigger On condition in the Delay By Time trigger mode.

Returned Format [:TRIGger:ADVanced:DELay:TDLY:DELay] <delay><NL>

29-121

Trigger Commands
TDLY:TRIGger:SOURce

TDLY:TRIGger:SOURce

Command :TRIGger:ADVanced:DELay:TDLY:TRIGger:SOURce
{CHANnel<N> | DIGital<M>}

This command sets the Trigger On source for a Delay By Time trigger event.

<N> An integer, 1 - 4.

<M> An integer, 0 - 15. The digital channels are only available on the MSO oscilloscopes
or DSO models with the MSO license installed.

Query :TRIGger:ADVanced:DELay:TDLY:TRIGger:SOURce?

The query returns the currently defined Trigger On source in the Delay By Time
trigger mode.

Returned Format [:TRIGger:ADVanced:DELay:TDLY:TRIGger:SOURce] {CHANnel<N> |
DIGital<M>}<NL>

29-122

Trigger Commands
TDLY:TRIGger:SLOPe

TDLY:TRIGger:SLOPe

Command :TRIGger:ADVanced:DELay:TDLY:TRIGger:SLOPe
{NEGative|POSitive}

This command sets the trigger slope for the Delay By Time trigger event.

Query :TRIGger:ADVanced:DELay:TDLY:TRIGger:SLOPe?

The query returns the currently defined slope for an event in the Delay By Time trigger
mode.

Returned Format [:TRIGger:ADVanced:DELay:TDLY:TRIGger:SLOPe]
{NEGative|POSitive}<NL>

29-123

Trigger Commands
TDLY:TRIGger:SLOPe

Advanced Standard TV Mode and Commands

Use TV trigger mode to trigger on one of the standard television waveforms.
Also, use this mode to trigger on a custom television waveform that you define,
as described in the next section.

There are four types of television (TV) trigger modes: 525 (NTSC or PAL-
M), 625 (PAL), and User Defined. The 525 and 625 are predefined video
standards used throughout the world. The User Defined TV trigger, described
in the next section, lets you trigger on nonstandard TV waveforms.

525 and 625 TV Trigger Modes

Source Use the Source control to select one of the oscilloscope channels as the trigger
source.

Level Use to set the trigger voltage level. When setting the trigger level for your
waveform, it is usually best to choose a voltage value that is just below the
bottom of burst.

When you adjust the trigger level control, a horizontal dashed line with a T
on the right-hand side appears showing you where the trigger level is with
respect to your waveform. After a period of time the dashed line will
disappear. To redisplay the line, adjust the trigger level control again, or
activate the Trigger dialog.

Positive or
Negative Sync

Use the Positive and Negative Sync controls to select either a positive sync
pulse or a negative sync pulse as the trigger.

Field Use the Field control to select video field 1 or video field 2 as the trigger.

Line Use the Line control to select the horizontal line you want to view within the
chosen video field.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise
Reject).

STV Commands

29-124

Trigger Commands
TDLY:TRIGger:SLOPe

These commands set the conditions for the TV trigger mode using standard,
predefined parameters (in STV mode), or user-defined parameters (in UDTV
mode). The STV commands are used for triggering on television waveforms,
and let you select one of the TV waveform frames and one of the lines within
that frame.

Set the Mode Before Executing Commands
Before executing the :TRIGger:ADVanced:STV commands, set the mode by
entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE TV and

:TRIGger:ADVanced:TV:MODE L525 or
:TRIGger:ADVanced:TV:MODE L625

To query the oscilloscope for the advanced trigger mode or the advanced
trigger TV mode, enter:

:TRIGger:ADVanced:MODE? or
:TRIGger:ADVanced:TV:MODE?

You set up the :TRIGger:ADVanced:TV:STV commands with the following
commands and queries:

• FIELd
• LINE
• SOURce
• SPOLarity

29-125

Trigger Commands
STV:FIELd

STV:FIELd

Command :TRIGger:ADVanced:TV:STV:FIELd {1|2}

This command is available in standard TV trigger modes L525 and L626.
The :TRIGger:ADVanced:TV:STV:FIELd command selects which TV waveform
field is used during standard TV trigger mode. The line within the selected field is
specified using the :TRIGger:ADVanced:TV:STV:LINE <line_number> command.

Query :TRIGger:ADVanced:TV:STV:FIELd?

The query returns the current television waveform field.

Returned Format [:TRIGger:ADVanced:TV:STV:FIELd] {1|2}<NL>

29-126

Trigger Commands
STV:LINE

STV:LINE

Command :TRIGger:ADVanced:TV:STV:LINE <line_number>

This command is available in standard TV trigger modes L525 and L626.
The :TRIGger:ADVanced:TV:STV:LINE command selects the horizontal line that
the instrument will trigger on. Allowable line_number entry depends on the
:TRIGger:ADVanced:TV:STV:FIELd selected. Once the vertical sync pulse of the
selected field is received, the trigger is delayed by the number of lines specified.

<line_number> Horizontal line number. Allowable values range from 1 to 625, depending on
:TRIGger:ADVanced:TV:STV:FIELd settings as shown below.

Query :TRIGger:ADVanced:TV:STV:LINE?

The query returns the current line number.

Returned Format [:TRIGger:ADVanced:TV:STV:LINE] <line_number><NL>

STV Modes
525 625

Field 1 1 to 263 1 to 313
Field 2 1 to 262 314 to 625

29-127

Trigger Commands
STV:SOURce

STV:SOURce

Command :TRIGger:ADVanced:TV:STV:SOURce {CHANnel<N>}

This command is available in standard TV trigger modes L525 and L626.
The :TRIGger:ADVanced:TV:STV:SOURce command selects the source for standard
TV mode triggering. This is the source that will be used for subsequent
:TRIGger:ADVanced:TV:STV commands and queries.

<N> An integer, 1 - 4.

Query :TRIGger:ADVanced:TV:STV:SOURce?

The query returns the currently selected standard TV trigger mode source.

Returned Format [:TRIGger:ADVanced:TV:STV:SOURce] {CHANnel<N>|EXTernal}<NL>

29-128

Trigger Commands
STV:SPOLarity

STV:SPOLarity

Command :TRIGger:ADVanced:TV:STV:SPOLarity
{NEGative|POSitive}

This command is available in standard TV trigger modes L525 and L626.
The :TRIGger:ADVanced:TV:STV:SPOLarity (Sync POLarity) command specifies
the vertical sync pulse polarity for the selected field used during standard TV mode
triggering.

Query :TRIGger:ADVanced:TV:STV:SPOLarity?

The query returns the currently selected sync pulse polarity.

Returned Format [:TRIGger:ADVanced:TV:STV:SPOLarity] {NEGative|POSitive}<NL>

29-129

Trigger Commands
STV:SPOLarity

Advanced User Defined TV Mode and Commands

Use TV trigger mode to trigger on one of the standard television waveforms,
as described in the previous section, and to trigger on a custom television
waveform that you define. The User Defined TV trigger lets you trigger on
nonstandard TV waveforms.

User Defined TV Trigger

Source Use the Source control to select one of the oscilloscope channels as the trigger
source.

Level Use the Level control to set the trigger voltage level.

When setting the trigger level for your waveform, it is usually best to choose
a voltage value that is just below the bottom of burst.

When you adjust the trigger level control, a horizontal dashed line with a T
on the right-hand side appears showing you where the trigger level is with
respect to your waveform. After a period of time the dashed line will
disappear. To redisplay the line, adjust the trigger level control again, or
activate the Trigger dialog. A permanent icon with arrow (either T, TL, or
TH) is also displayed on the right side of the waveform area, showing the
trigger level.

Pos or Neg Use the Pos and Neg controls to select either a positive pulse or a negative
pulse to arm the trigger circuitry.

Time > Use the Time > control to set the minimum time that the pulse must be present
to be considered a valid sync pulse.

Edge Number Use the Edge Number control to select the number of edges you want the
oscilloscope to count before triggering.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise
Reject).

UDTV Commands

29-130

Trigger Commands
STV:SPOLarity

These commands set the conditions for the TV trigger mode using user-
defined parameters. They are used for triggering on non-standard television
waveforms, and let you define the conditions that must be met before a trigger
occurs.

Set the Mode Before Executing Commands
Before executing the :TRIGger:ADVanced:TV:UDTV commands, set the
mode by entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE TV and
:TRIGger:ADVanced:TV:MODE UDTV

To query the oscilloscope for the advanced trigger mode or the advanced
trigger TV mode, enter:

:TRIGger:ADVanced:MODE? or
:TRIGger:ADVanced:TV:MODE?

You set up the :TRIGger:ADVanced:TV:UDTV commands with the
following commands and queries:

• ENUMber
• PGTHan
• POLarity
• SOURce
When triggering for User Defined TV mode:

• Set the channel or trigger source for the trigger using:
:TRIGger:ADVanced:TV:UDTV:SOURce

• Set the conditions for arming the trigger using:
:TRIGger:ADVanced:TV:UDTV:PGTHan, and
:TRIGger:ADVanced:TV:UDTV:POLarity.

• Set the number of events to delay after the trigger is armed using:
:TRIGger:ADVanced:TV:UDTV:ENUMber

• Set the waveform edge that causes the trigger to occur after arming
and delay using:

29-131

Trigger Commands
STV:SPOLarity

:TRIGger:ADVanced:TV:UDTV:EDGE

29-132

Trigger Commands
UDTV:ENUMber

UDTV:ENUMber

Command :TRIGger:ADVanced:TV:UDTV:ENUMber <count>

The :TRIGger:ADVanced:TV:UDTV:ENUMber command specifies the number of
events (horizontal sync pulses) to delay after arming the trigger before looking for the
trigger event. Specify conditions for arming the trigger using:
TRIGger:ADVanced:TV:UDTV:PGTHan, and
TRIGger:ADVanced:TV:UDTV:POLarity.

<count> An integer for the number of events to delay. Allowable values range from 1 to
16,000,000.

Query :TRIGger:ADVanced:TV:UDTV:ENUMber?

The query returns the currently programmed count value.

Returned Format [:TRIGger:ADVanced:TV:UDTV:ENUMber] <count><NL>

29-133

Trigger Commands
UDTV:PGTHan

UDTV:PGTHan

Command :TRIGger:ADVanced:TV:UDTV:PGTHan <lower_limit>

The :TRIGger:ADVanced:TV:UDTV:PGTHan (Present Greater THan) command
specifies the minimum pulse width of the waveform used to arm the trigger used
during user-defined trigger mode.

<lower_limit> Minimum pulse width (time >), from 5 ns to 9.9999999 s.

Query :TRIGger:ADVanced:TV:UDTV:PGTHan?

The query returns the currently selected minimum pulse width.

Returned Format [:TRIGger:ADVanced:TV:UDTV:PGTHan] <lower_limit><NL>

29-134

Trigger Commands
UDTV:POLarity

UDTV:POLarity

Command :TRIGger:ADVanced:TV:UDTV:POLarity
{NEGative|POSitive}

The :TRIGger:ADVanced:TV:UDTV:POLarity command specifies the polarity for
the sync pulse used to arm the trigger in the user-defined trigger mode.

Query :TRIGger:ADVanced:TV:UDTV:POLarity?

The query returns the currently selected UDTV sync pulse polarity.

Returned Format [:TRIGger:ADVanced:TV:UDTV:POLarity] {NEGative|POSitive}<NL>

29-135

Trigger Commands
UDTV:SOURce

UDTV:SOURce

Command :TRIGger:ADVanced:TV:UDTV:SOURce {CHANnel<N>}

The :TRIGger:ADVanced:TV:UDTV:SOURce command selects the source for user-
defined TV mode triggering. This is the source that will be used for subsequent
:TRIGger:ADVanced:TV:UDTV commands and queries.

<N> An integer, 1 - 4.

Query :TRIGger:ADVanced:TV:UDTV:SOURce?

The query returns the currently selected user-defined TV trigger mode source.

Returned Format [:TRIGger:ADVanced:TV:UDTV:SOURce] {CHANnel<N>}<NL>

29-136

Trigger Commands
UDTV:SOURce

Advanced Trigger Violation Modes

Violation triggering helps you find conditions within your circuit that violate
the design rules. There are four types of violation triggering: Pulse Width,
Setup and Hold Time, and Transition.

PWIDth This mode lets you find pulses that are wider than the rest of the pulses in your
waveform. It also lets you find pulses that are narrower than the rest of the
pulses in the waveform.

SETup This mode lets you find violations of setup and hold times in your circuit. Use
this mode to select setup time triggering, hold time triggering, or both setup
and hold time triggering.

TRANsition This mode lets you find any edge in your waveform that violates a rise time
or fall time specification. The Infiniium oscilloscope can be set to trigger on
rise times or fall times that are too slow or too fast.

29-137

Trigger Commands
VIOLation:MODE

VIOLation:MODE

Command :TRIGger:ADVanced:VIOLation:MODE {PWIDth | SETup |
TRANsition}

After you have selected the advanced trigger mode with the commands
:TRIGger:MODE ADVanced and :TRIGger:ADVanced:MODE VIOLation,
the :TRIGger:ADVanced:VIOLation:MODE <violation_mode> command specifies
the mode for trigger violations. The <violation_mode> is either PWIDth, SETup, or
TRANsition.

Query :TRIGger:ADVanced:VIOLation:MODE?

The query returns the currently defined mode for trigger violations.

Returned Format [:TRIGger:ADVanced:VIOLation:MODE] {PWIDth | SETup |
TRANsition}<NL>

29-138

Trigger Commands
VIOLation:MODE

Pulse Width Violation Mode and Commands

Use Pulse Width Violation Mode to find pulses that are wider than the rest of
the pulses in your waveform. You can also use this mode to find pulses that
are narrower than the rest of the pulses in the waveform.

The oscilloscope identifies a pulse width trigger by looking for a pulse that is
either wider than or narrower than other pulses in your waveform. You specify
the pulse width and pulse polarity (positive or negative) that the oscilloscope
uses to determine a pulse width violation. For a positive polarity pulse, the
oscilloscope triggers when the falling edge of a pulse crosses the trigger level.
For a negative polarity pulse, the oscilloscope triggers when the rising edge
of a pulse crosses the trigger level.

When looking for narrower pulses, pulse width less than (Width <) trigger is
the same as glitch trigger.

Source Use Source to select the oscilloscope channel used to trigger the oscilloscope.

Level Use the Level control to set the voltage level through which the pulse must
pass before the oscilloscope will trigger.

When setting the trigger level for your waveform, it is usually best to choose
a voltage value that is equal to the voltage value at the mid point of your
waveform. For example, if you have a waveform with a minimum value of 0
(zero) volts and a maximum value of 5 volts, then 2.5 volts is the best place
to set your trigger level. The reason this is the best choice is that there may
be some ringing or noise at both the 0-volt and 5-volt levels that can cause
false triggers.

When you adjust the trigger level control, a horizontal dashed line with a T
on the right-hand side appears showing you where the trigger level is with
respect to your waveform. After a period of time the dashed line will
disappear. To redisplay the line, adjust the trigger level control again, or
activate the Trigger dialog. A permanent icon with arrow (either T, TL, or

29-139

Trigger Commands
VIOLation:MODE

TH) is also displayed on the right side of the waveform area, showing the
trigger level.

Polarity Use the Polarity control to specify positive or negative pulses.

Direction Use Direction to set whether a pulse must be wider (Width >) or narrower
(Width <) than the width value to trigger the oscilloscope.

Width Use the Width control to define how wide of a pulse will trigger the
oscilloscope. The glitch width range is from 1.5 ns to 10 s.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise
Reject).

Set the Mode Before Executing Commands
Before executing the :TRIGger:ADVanced:VIOLation:PWIDth commands,
set the mode by entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE VIOLation and
:TRIGger:ADVanced:VIOLation:MODE PWIDth

To query the oscilloscope for the advanced trigger violation mode, enter:

:TRIGger:ADVanced:VIOLation:MODE?

29-140

Trigger Commands
VIOLation:PWIDth:DIRection

VIOLation:PWIDth:DIRection

Command :TRIGger:ADVanced:VIOLation:PWIDth:DIRection
{GTHan|LTHan}

This command specifies whether a pulse must be wider or narrower than the width
value to trigger the oscilloscope.

Query :TRIGger:ADVanced:VIOLation:PWIDth:DIRection?

The query returns the currently defined direction for the pulse width trigger.

Returned Format [:TRIGger:ADVanced:VIOLation:PWIDth:DIRection]
{GTHan|LTHan}<NL>

29-141

Trigger Commands
VIOLation:PWIDth:POLarity

VIOLation:PWIDth:POLarity

Command :TRIGger:ADVanced:VIOLation:PWIDth:POLarity
{NEGative|POSitive}

This command specifies the pulse polarity that the oscilloscope uses to determine a
pulse width violation. For a negative polarity pulse, the oscilloscope triggers when
the rising edge of a pulse crosses the trigger level. For a positive polarity pulse, the
oscilloscope triggers when the falling edge of a pulse crosses the trigger level.

Query :TRIGger:ADVanced:VIOLation:PWIDth:POLarity?

The query returns the currently defined polarity for the pulse width trigger.

Returned Format [:TRIGger:ADVanced:VIOLation:PWIDth:POLarity]
{NEGative|POSitive}<NL>

29-142

Trigger Commands
VIOLation:PWIDth:SOURce

VIOLation:PWIDth:SOURce

Command :TRIGger:ADVanced:VIOLation:PWIDth:SOURce
{CHANnel<N> | Digital<M>}

This command specifies the channel source used to trigger the oscilloscope with the
pulse width trigger.

<N> An integer, 1 - 2, for two channel Infiniium Oscilloscope.
An integer, 1 - 4, for all other Infiniium Oscilloscope models.

<level> A real number for the voltage through which the pulse must pass before the
oscilloscope will trigger.

<M> An integer, 0 - 15. The digital channels are only available on the MSO oscilloscopes
or DSO models with the MSO license installed.

Query :TRIGger:ADVanced:VIOLation:PWIDth:SOURce?

The query returns the currently defined channel source for the pulse width trigger.

Returned Format [:TRIGger:ADVanced:VIOLation:PWIDth:SOURce]
{CHANnel<N>|DIGital<M>}<NL>

29-143

Trigger Commands
VIOLation:PWIDth:WIDTh

VIOLation:PWIDth:WIDTh

Command :TRIGger:ADVanced:VIOLation:PWIDth:WIDTh <width>

This command specifies how wide a pulse must be to trigger the oscilloscope.

<width> Pulse width, which can range from 1.5 ns to 10 s.

Query :TRIGger:ADVanced:VIOLation:PWIDth:WIDTh?

The query returns the currently defined width for the pulse.

Returned Format [:TRIGger:ADVanced:VIOLation:PWIDth:WIDTh] <width><NL>

29-144

Trigger Commands
VIOLation:PWIDth:WIDTh

Setup Violation Mode and Commands

Use Setup Violation Mode to find violations of setup and hold times in your
circuit.

Mode

Use MODE to select Setup, Hold, or both Setup and Hold time triggering.

You can have the oscilloscope trigger on violations of setup time, hold time,
or both setup and hold time. To use Setup Violation Type, the oscilloscope
needs a clock waveform, used as the reference, and a data waveform for the
trigger source.

Setup Time Mode When using the Setup Time Mode, a time window is defined where the right
edge is the clock edge and the left edge is the selected time before the clock
edge. The waveform must stay outside of the thresholds during this time
window. If the waveform crosses a threshold within the time window, a
violation event occurs and the oscilloscope triggers.

Hold Time Mode When using Hold Time Mode, the waveform must not cross the threshold
voltages after the specified clock edge for at least the hold time you have
selected. Otherwise, a violation event occurs and the oscilloscope triggers.

Setup and Hold
Time Mode

When using the Setup and Hold Time Mode, if the waveform violates either
a setup time or hold time, the oscilloscope triggers.

Data Source

Use the data source (DSOurce) command to select the channel used as the
data, the low-level data threshold, and the high-level data threshold. For data
to be considered valid, it must be below the lower threshold or above the upper
threshold during the time of interest.

DSOurce Use DSOurce to select the channel you want to use for the data source.

Low Threshold Use the low threshold (LTHReshold) to set the minimum threshold for your
data. Data is valid below this threshold.

29-145

Trigger Commands
VIOLation:PWIDth:WIDTh

High Threshold Use the high threshold (HTHReshold) to set the maximum threshold for your
data. Data is valid above this threshold.

Clock Source

Use the clock source (CSOurce) command to select the clock source, trigger
level, and edge polarity for your clock. Before the trigger circuitry looks for
a setup or hold time violation, the clock must pass through the voltage level
you have set.

CSOurce Use CSOurce to select the channel you want to use for the clock source.

LEVel Use LEVel to set voltage level on the clock waveform as given in the data
book for your logic family.

RISing or
FALLing

Use RISing or FALLing to select the edge of the clock the oscilloscope uses
as a reference for the setup or hold time violation trigger.

Time

Setup Time Use SETup to set the amount of setup time used to test for a violation. The
setup time is the amount of time that the data has to be stable and valid prior
to a clock edge. The minimum is 1.5 ns; the maximum is 20 ns.

Hold Time Use HOLD to set the amount of hold time used to test for a violation. The
hold time is the amount of time that the data has to be stable and valid after a
clock edge. The minimum is 1.5 ns; the maximum is 20 ns.

Setup and Hold Use SHOLd (Setup and Hold) to set the amount of setup and hold time used
to test for a violation.

The setup time is the amount of time that the data has to be stable and valid
prior to a clock edge. The hold time is the amount of time that the data
waveform has to be stable and valid after a clock edge.

The setup time plus hold time equals 20 ns maximum. So, if the setup time
is 1.5 ns, the maximum hold time is 18.5 ns.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise
Reject).

29-146

Trigger Commands
VIOLation:PWIDth:WIDTh

Set the Mode Before Executing Commands
Before executing the :TRIGger:ADVanced:VIOLation:SETup commands,
set the mode by entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE VIOLation and
:TRIGger:ADVanced:VIOLation:MODE SETup and
:TRIGger:ADVanced:VIOLation:SETup:MODE <setup_mode>

Where <setup_mode> includes SETup, HOLD, and SHOLd.

To query the oscilloscope for the advanced trigger violation setup mode, enter:

:TRIGger:ADVanced:VIOLation:SETup:MODE?

29-147

Trigger Commands
VIOLation:SETup:MODE

VIOLation:SETup:MODE

Command :TRIGger:ADVanced:VIOLation:SETup:MODE
{SETup|HOLD|SHOLd}

SETup When using the setup time mode, a time window is defined where the right edge is
the clock edge and the left edge is the selected time before the clock edge. The
waveform must stay outside of the trigger level thresholds during this time window.
If the waveform crosses a threshold during this time window, a violation event occurs
and the oscilloscope triggers.

HOLD When using the hold time mode, the waveform must not cross the threshold voltages
after the specified clock edge for at least the hold time you have selected. Otherwise,
a violation event occurs and the oscilloscope triggers.

SHOLd When using the setup and hold time mode, if the waveform violates either a setup
time or hold time, the oscilloscope triggers. The total time allowed for the sum of
setup time plus hold time is 20 ns maximum.

Query :TRIGger:ADVanced:VIOLation:SETup:MODE?

The query returns the currently selected trigger setup violation mode.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:MODE]
{SETup|HOLD|SHOLd}<NL>

29-148

Trigger Commands
VIOLation:SETup:SETup:SETup:CSOurce

VIOLation:SETup:SETup:SETup:CSOurce

Command :TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce
{CHANnel<N>}

This command specifies the clock source for the clock used for the trigger setup
violation. The clock must pass through the voltage level you have set before the
trigger circuitry looks for a setup or hold time violation.

<N> An integer, 1 - 4.

Query :TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce?

The query returns the currently defined clock source for the trigger setup violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce]
{CHANnel<N>}<NL>

29-149

Trigger Commands
VIOLation:SETup:SETup:CSOurce:LEVel

VIOLation:SETup:SETup:CSOurce:LEVel

Command :TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:
LEVel {{CHANnel<N>},<level>}

This command specifies the level for the clock source used for the trigger setup
violation. The clock must pass through the voltage level you have set before the
trigger circuitry looks for a setup or hold time violation.

<N> An integer, 1 - 4.

<level> A real number for the voltage level for the trigger setup violation clock waveform,
and depends on the type of circuitry logic you are using.

Query :TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:
LEVel? {CHANnel<N>}

The query returns the specified clock source level for the trigger setup violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:LEVel
{CHANnel<N>},] <level><NL>

29-150

Trigger Commands
VIOLation:SETup:SETup:CSOurce:EDGE

VIOLation:SETup:SETup:CSOurce:EDGE

Command :TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:
EDGE {RISing|FALLing}

This command specifies the edge for the clock source used for the trigger setup
violation. The clock must pass through the voltage level you have set before the
trigger circuitry looks for a setup or hold time violation.

Query :TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:
EDGE?

The query returns the currently defined clock source edge for the trigger setup
violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SETup:CSOurce:EDGE]
{RISing|FALLing}<NL>

29-151

Trigger Commands
VIOLation:SETup:SETup:DSOurce

VIOLation:SETup:SETup:DSOurce

Command :TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce
{CHANnel<N>}

The data source commands specify the data source for the trigger setup violation.

<N> An integer, 1 - 4

Query :TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce?

The query returns the currently defined data source for the trigger setup violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce]
{CHANnel<N>}<NL>

29-152

Trigger Commands
VIOLation:SETup:SETup:DSOurce:HTHReshold

VIOLation:SETup:SETup:DSOurce:HTHReshold

Command :TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce:
HTHReshold {{CHANnel<N>},<level>}

This command specifies the data source for the trigger setup violation, and the high-
level data threshold for the selected data source. Data is valid when it is above the
high-level data threshold, and when it is below the low-level data threshold.

<N> An integer, 1 - 4.

<level> A real number for the data threshold level for the trigger setup violation, and is used
with the high and low threshold data source commands.

Query :TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce:
HTHReshold? {CHANnel<N>}

The query returns the specified data source for the trigger setup violation, and the high
data threshold for the data source.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce:HTHReshold
{CHANnel<N>},] <level><NL>

29-153

Trigger Commands
VIOLation:SETup:SETup:DSOurce:LTHReshold

VIOLation:SETup:SETup:DSOurce:LTHReshold

Command :TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce:
LTHReshold {{CHANnel<N>},<level>}

This command specifies the data source for the trigger setup violation, and the low-
level data threshold for the selected data source. Data is valid when it is above the
high-level data threshold, and when it is below the low-level data threshold.

<N> An integer, 1 - 4.

<level> A real number for the data threshold level for the trigger setup violation, and is used
with the high and low threshold data source commands.

Query :TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce:
LTHReshold? {CHANnel<N>}

The query returns the specified data source for the trigger setup violation, and the low
data threshold for the data source.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SETup:DSOurce:LTHReshold
{CHANnel<N>},] <level><NL>

29-154

Trigger Commands
VIOLation:SETup:SETup:TIME

VIOLation:SETup:SETup:TIME

Command :TRIGger:ADVanced:VIOLation:SETup:SETup:TIME <time>

This command specifies the amount of setup time used to test for a trigger violation.
The setup time is the amount of time that the data must be stable and valid prior to a
clock edge.

<time> Setup time, in seconds.

Query :TRIGger:ADVanced:VIOLation:SETup:SETup:TIME?

The query returns the currently defined setup time for the trigger violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SETup:TIME] <time><NL>

29-155

Trigger Commands
VIOLation:SETup:HOLD:CSOurce

VIOLation:SETup:HOLD:CSOurce

Command :TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce
{CHANnel<N>}

This command specifies the clock source for the clock used for the trigger hold
violation. The clock must pass through the voltage level you have set before the
trigger circuitry looks for a setup or hold time violation.

<N> An integer, 1 - 4.

Query :TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce?

The query returns the currently defined clock source for the trigger hold violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce]
{CHANnel<N>}<NL>

29-156

Trigger Commands
VIOLation:SETup:HOLD:CSOurce:LEVel

VIOLation:SETup:HOLD:CSOurce:LEVel

Command :TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce:
LEVel {{CHANnel<N>},<level>}

This command specifies the level for the clock source used for the trigger hold
violation. The clock must pass through the voltage level you have set before the
trigger circuitry looks for a setup or hold time violation.

<N> An integer, 1 - 4.

<level> A real number for the voltage level for the trigger hold violation clock waveform, and
depends on the type of circuitry logic you are using.

Query :TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce:
LEVel? {CHANnel<N>}

The query returns the specified clock source level for the trigger hold violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce:LEVel
{CHANnel<N>},] <level><NL>

29-157

Trigger Commands
VIOLation:SETup:HOLD:CSOurce:EDGE

VIOLation:SETup:HOLD:CSOurce:EDGE

Command :TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce:
EDGE {RISing|FALLing}

This command specifies the edge for the clock source used for the trigger hold
violation. The clock must pass through the voltage level you have set before the
trigger circuitry looks for a setup or hold time violation.

Query :TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce:
EDGE?

The query returns the currently defined clock source edge for the trigger hold
violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:HOLD:CSOurce:EDGE]
{RISing|FALLing}<NL>

29-158

Trigger Commands
VIOLation:SETup:HOLD:DSOurce

VIOLation:SETup:HOLD:DSOurce

Command :TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce
{CHANnel<N>}

The data source commands specify the data source for the trigger hold violation.

<N> An integer, 1 - 4.

Query :TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce?

The query returns the currently defined data source for the trigger hold violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce]
{CHANnel<N>}<NL>

29-159

Trigger Commands
VIOLation:SETup:HOLD:DSOurce:HTHReshold

VIOLation:SETup:HOLD:DSOurce:HTHReshold

Command :TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce:
HTHReshold {{CHANnel<N>},<level>}

This command specifies the data source for the trigger hold violation, and the high-
level data threshold for the selected data source. Data is valid when it is above the
high-level data threshold, and when it is below the low-level data threshold.

<N> An integer, 1 - 4.

<level> A real number for the data threshold level for the trigger hold violation, and is used
with the high and low threshold data source commands.

Query :TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce:
HTHReshold? {CHANnel<N>}

The query returns the specified data source for the trigger hold violation, and the high
data threshold for the data source.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce:HTHReshold
{CHANnel<N>},] <level><NL>

29-160

Trigger Commands
VIOLation:SETup:HOLD:DSOurce:LTHReshold

VIOLation:SETup:HOLD:DSOurce:LTHReshold

Command :TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce:
LTHReshold {{CHANnel<N>},<level>}

This command specifies the data source for the trigger hold violation, and the low-
level data threshold for the selected data source. Data is valid when it is above the
high-level data threshold, and when it is below the low-level data threshold.

<N> An integer, 1 - 4.

<level> A real number for the data threshold level for the trigger hold violation, and is used
with the high and low threshold data source commands.

Query :TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce:
LTHReshold? {CHANnel<N>}

The query returns the specified data source for the trigger hold violation, and the low
data threshold for the data source.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:HOLD:DSOurce:LTHReshold
{CHANnel<N>},] <level><NL>

29-161

Trigger Commands
VIOLation:SETup:HOLD:TIME

VIOLation:SETup:HOLD:TIME

Command :TRIGger:ADVanced:VIOLation:SETup:HOLD:TIME <time>

This command specifies the amount of hold time used to test for a trigger violation.
The hold time is the amount of time that the data must be stable and valid after a clock
edge.

<time> Hold time, in seconds.

Query :TRIGger:ADVanced:VIOLation:SETup:HOLD:TIME?

The query returns the currently defined hold time for the trigger violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:HOLD:TIME] <time><NL>

29-162

Trigger Commands
VIOLation:SETup:SHOLd:CSOurce

VIOLation:SETup:SHOLd:CSOurce

Command :TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce:
{CHANnel<N>}

This command specifies the clock source for the clock used for the trigger setup and
hold violation. The clock must pass through the voltage level you have set before the
trigger circuitry looks for a setup and hold time violation.

<N> An integer, 1 - 4.

Query :TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce?

The query returns the currently defined clock source for the trigger setup and hold
violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce]
{CHANnel<N>}<NL>

29-163

Trigger Commands
VIOLation:SETup:SHOLd:CSOurce:LEVel

VIOLation:SETup:SHOLd:CSOurce:LEVel

Command :TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce:
LEVel {{CHANnel<N>},<level>}

This command specifies the clock source trigger level for the clock used for the trigger
setup and hold violation. The clock must pass through the voltage level you have set
before the trigger circuitry looks for a setup and hold time violation.

<N> An integer, 1 - 4.

<level> A real number for the voltage level for the trigger setup and hold violation clock
waveform, and depends on the type of circuitry logic you are using.

Query :TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce:
LEVel? {CHANnel<N>}

The query returns the specified clock source level for the trigger setup and hold
violation level for the clock source.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce:LEVel
{CHANnel<N>},] <level><NL>

29-164

Trigger Commands
VIOLation:SETup:SHOLd:CSOurce:EDGE

VIOLation:SETup:SHOLd:CSOurce:EDGE

Command :TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce:
EDGE {RISing|FALLing}

This command specifies the clock source trigger edge for the clock used for the trigger
setup and hold violation. The clock must pass through the voltage level you have set
before the trigger circuitry looks for a setup and hold time violation.

Query :TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce:
EDGE?

The query returns the currently defined clock source edge for the trigger setup and
hold violation level for the clock source.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SHOLd:CSOurce:EDGE]
{RISing|FALLing}<NL>

29-165

Trigger Commands
VIOLation:SETup:SHOLd:DSOurce

VIOLation:SETup:SHOLd:DSOurce

Command :TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce
{CHANnel<N>}

The data source commands specify the data source for the trigger setup and hold
violation.

<N> An integer, 1 - 4.

Query :TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce?

The query returns the currently defined data source for the trigger setup and hold
violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce]
{CHANnel<N>}<NL>

29-166

Trigger Commands
VIOLation:SETup:SHOLd:DSOurce:HTHReshold

VIOLation:SETup:SHOLd:DSOurce:HTHReshold

Command :TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce:
HTHReshold {{CHANnel<N>},<level>}

This command specifies the data source for the trigger setup and hold violation, and
the high-level data threshold for the selected data source. Data is valid when it is
above the high-level data threshold, and when it is below the low-level data threshold.

<N> An integer, 1 - 4.

<level> A real number for the data threshold level for the trigger setup and hold violation, and
is used with the high and low threshold data source commands.

Query :TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce:
HTHReshold? {CHANnel<N>}

The query returns the specified data source for the trigger setup and hold violation,
and the high data threshold for the data source.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce:HTHReshold
{CHANnel<N>},] <level><NL>

29-167

Trigger Commands
VIOLation:SETup:SHOLd:DSOurce:LTHReshold

VIOLation:SETup:SHOLd:DSOurce:LTHReshold

Command :TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce:
LTHReshold {{CHANnel<N>},<level>}

This command specifies the data source for the trigger setup and hold violation, and
the low-level data threshold for the selected data source. Data is valid when it is above
the high-level data threshold, and when it is below the low-level data threshold.

<N> An integer, 1 - 4.

<level> A real number for the data threshold level for the trigger setup and hold violation, and
is used with the high and low threshold data source commands.

Query :TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce:
LTHReshold? {CHANnel<N>}

The query returns the specified data source for the setup and trigger hold violation,
and the low data threshold for the data source.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SHOLd:DSOurce:LTHReshold
{CHANnel<N>},] <level><NL>

29-168

Trigger Commands
VIOLation:SETup:SHOLd:SetupTIMe (STIMe)

VIOLation:SETup:SHOLd:SetupTIMe (STIMe)

Command :TRIGger:ADVanced:VIOLation:SETup:SHOLd:SetupTIMe
<time>

This command specifies the amount of setup time used to test for both a setup and
hold trigger violation. The setup time is the amount of time that the data must be
stable and valid before a clock edge.

<time> Setup time, in seconds.

Query :TRIGger:ADVanced:VIOLation:SETup:SHOLd:SetupTIMe?

The query returns the currently defined setup time for the setup and hold trigger
violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SHOLd:SetupTIMe] <time><NL>

29-169

Trigger Commands
VIOLation:SETup:SHOLd:HoldTIMe (HTIMe)

VIOLation:SETup:SHOLd:HoldTIMe (HTIMe)

Command :TRIGger:ADVanced:VIOLation:SETup:SHOLd:HoldTIMe
<time>

This command specifies the amount of hold time used to test for both a setup and hold
trigger violation. The hold time is the amount of time that the data must be stable and
valid after a clock edge.

<time> Hold time, in seconds.

Query :TRIGger:ADVanced:VIOLation:SETup:SHOLD:HoldTIMe?

The query returns the currently defined hold time for the setup and hold trigger
violation.

Returned Format [:TRIGger:ADVanced:VIOLation:SETup:SHOLD:HoldTIMe] <time><NL>

29-170

Trigger Commands
VIOLation:SETup:SHOLd:HoldTIMe (HTIMe)

Transition Violation Mode

Use Transition Violation Mode to find any edge in your waveform that violates
a rise time or fall time specification. Infiniium Oscilloscopes find a transition
violation trigger by looking for any pulses in your waveform with rising or
falling edges that do not cross two voltage levels in the amount of time you
have specified.

The rise time is measured from the time that your waveform crosses the low
threshold until it crosses the high threshold. The fall time is measured from
the time that the waveform crosses the high threshold until it crosses the low
threshold.

Source Use Source to select the channel used for a transition violation trigger.

Low Threshold Use Low Threshold to set the low voltage threshold.

High Threshold Use High Threshold to set the high voltage threshold.

Type Use Type to select Rise Time or Fall Time violation.

Trigger On Trigger On parameters include > Time and < Time.

> Time Use > Time to look for transition violations that are longer than the time
specified.

< Time Use < Time to look for transition violations that are less than the time
specified.

Time Use Time to set the amount of time to determine a rise time or fall time
violation.

Available trigger conditioning includes HOLDoff and HYSTeresis (Noise
Reject).

29-171

Trigger Commands
VIOLation:SETup:SHOLd:HoldTIMe (HTIMe)

Set the Mode Before Executing Commands
Before executing the :TRIGger:ADVanced:VIOLation:TRANsition
commands, set the mode by entering:

:TRIGger:MODE ADVanced and
:TRIGger:ADVanced:MODE VIOLation and
:TRIGger:ADVanced:VIOLation:MODE TRANsition

To query the oscilloscope for the advanced trigger violation mode, enter:

:TRIGger:ADVanced:VIOLation:MODE?

29-172

Trigger Commands
VIOLation:TRANsition

VIOLation:TRANsition

Command :TRIGger:ADVanced:VIOLation:TRANsition:
{GTHan|LTHan} <time>

This command lets you look for transition violations that are greater than or less than
the time specified.

<time> The time for the trigger violation transition, in seconds.

Query :TRIGger:ADVanced:VIOLation:TRANsition:
{GTHan|LTHan}?

The query returns the currently defined time for the trigger transition violation.

Returned Format [:TRIGger:ADVanced:VIOLation:TRANsition:{GTHan|LTHan}]
<time><NL>

29-173

Trigger Commands
VIOLation:TRANsition:SOURce

VIOLation:TRANsition:SOURce

Command :TRIGger:ADVanced:VIOLation:TRANsition:SOURce
{CHANnel<N>}

The transition source command lets you find any edge in your waveform that violates
a rise time or fall time specification. The oscilloscope finds a transition violation
trigger by looking for any pulses in your waveform with rising or falling edges that
do not cross two voltage levels in the amount of time you have specified.

<N> An integer, 1 - 4.

Query :TRIGger:ADVanced:VIOLation:TRANsition:SOURce?

The query returns the currently defined transition source for the trigger transition
violation.

Returned Format [:TRIGger:ADVanced:VIOLation:TRANsition:SOURce]
{CHANnel<N>}<NL>

29-174

Trigger Commands
VIOLation:TRANsition:SOURce:HTHReshold

VIOLation:TRANsition:SOURce:HTHReshold

Command :TRIGger:ADVanced:VIOLation:TRANsition:SOURce:
HTHReshold {{CHANnel<N>},<level>}

This command lets you specify the source and high threshold for the trigger violation
transition. The oscilloscope finds a transition violation trigger by looking for any
pulses in your waveform with rising or falling edges that do not cross two voltage
levels in the amount of time you have specified.

<N> An integer, 1 - 4.

<level> A real number for the voltage threshold level for the trigger transition violation, and
is used with the high and low threshold transition source commands.

Query :TRIGger:ADVanced:VIOLation:TRANsition:SOURce:
HTHReshold? {CHANnel<N>}

The query returns the specified transition source for the trigger transition high
threshold violation.

Returned Format [:TRIGger:ADVanced:VIOLation:TRANsition:SOURce:HTHReshold
{CHANnel<N>},] <level><NL>

29-175

Trigger Commands
VIOLation:TRANsition:SOURce:LTHReshold

VIOLation:TRANsition:SOURce:LTHReshold

Command :TRIGger:ADVanced:VIOLation:TRANsition:SOURce:
LTHReshold {{CHANnel<N>},<level>}

This command lets you specify the source and low threshold for the trigger violation
transition. The oscilloscope finds a transition violation trigger by looking for any
pulses in your waveform with rising or falling edges that do not cross two voltage
levels in the amount of time you have specified.

<N> An integer, 1 - 4.

<level> A real number for the voltage threshold level for the trigger transition violation, and
is used with the high and low threshold transition source commands.

Query :TRIGger:ADVanced:VIOLation:TRANsition:SOURce:
LTHReshold? {CHANnel<N>}

The query returns the currently defined transition source for the trigger transition low
threshold violation.

Returned Format [:TRIGger:ADVanced:VIOLation:TRANsition:SOURce:LTHReshold
{CHANnel<N>},] <level><NL>

29-176

Trigger Commands
VIOLation:TRANsition:TYPE

VIOLation:TRANsition:TYPE

Command :TRIGger:ADVanced:VIOLation:TRANsition:TYPE
{RISetime|FALLtime}

This command lets you select either a rise time or fall time transition violation trigger
event.

Query :TRIGger:ADVanced:VIOLation:TRANsition:TYPE?

The query returns the currently defined transition type for the trigger transition
violation.

Returned Format [:TRIGger:ADVanced:VIOLation:TRANsition:TYPE]
{RISetime|FALLtime}<NL>

29-177

Trigger Commands
VIOLation:TRANsition:TYPE

29-178

Trigger Commands
VIOLation:TRANsition:TYPE

30

Waveform Commands

30-2

Waveform Commands

The WAVeform subsystem is used to transfer waveform data between a
computer and the oscilloscope. It contains commands to set up the waveform
transfer and to send or receive waveform records to or from the oscilloscope.
These WAVeform commands and queries are implemented in the Infiniium
Oscilloscopes:

• BANDpass?
• BYTeorder
• COMPlete?
• COUNt?
• COUPling?
• DATA?
• FORMat
• POINts?
• PREamble
• SEGMented:ALL
• SEGMented:COUNt?
• SEGMented:TTAG?
• SEGMented:XLISt?
• SOURce
• STReaming
• TYPE?
• VIEW
• XDISplay?
• XINCrement?
• XORigin?
• XRANge?
• XREFerence?
• XUNits?
• YDISplay?
• YINCrement?
• YORigin?

30-3

• YRANge?
• YREFerence?
• YUNits?

30-4

Data Acquisition
When data is acquired using the DIGitize command, the data is placed in the
channel or function memory of the specified source. After the DIGitize
command executes, the oscilloscope is stopped. If the oscilloscope is restarted
by your program or from the front panel, the data acquired with the DIGitize
command is overwritten.

You can query the preamble, elements of the preamble, or waveform data
while the oscilloscope is running, but the data will reflect only the current
acquisition, and subsequent queries will not reflect consistent data. For
example, if the oscilloscope is running and you query the X origin, the data
is queried in a separate command, it is likely that the first point in the data will
have a different time than that of the X origin. This is due to data acquisitions
that may have occurred between the queries. For this reason, Agilent
Technologies does not recommend this mode of operation. Instead, you
should use the DIGitize command to stop the oscilloscope so that all
subsequent queries will be consistent.

Waveform Data and Preamble
The waveform record consists of two parts: the preamble and the waveform
data. The waveform data is the actual sampled data acquired for the specified
source. The preamble contains the information for interpreting the waveform
data, including the number of points acquired, the format of the acquired data,
and the type of acquired data. The preamble also contains the X and Y
increments, origins, and references for the acquired data.

The values in the preamble are set when you execute the DIGitize command.
The preamble values are based on the current settings of the oscilloscope’s
controls.

Function and channel data are volatile and must be read following a DIGitize
command or the data will be lost when the oscilloscope is turned off.

30-5

Waveform Commands

Data Conversion
Data sent from the oscilloscope must be scaled for useful interpretation. The
values used to interpret the data are the X and Y origins and X and Y
increments. These values can be read using the :WAVeform:XORigin?,
WAVeform:YORigin?, WAVeform:XINCrement?, and
WAVeform:YINCreament? queries.

Conversion from Data Values to Units
To convert the waveform data values (essentially A/D counts) to real-world
units, such as volts, use the following scaling formulas:

Y-axis Units = data value x Yincrement + Yorigin (analog channels)
X-axis Units = data index x Xincrement + Xorigin,

where the data index starts at zero: 0, 1, 2, ..., n-1.

The first data point for the time (X-axis units) must be zero, so the time of the
first data point is the X origin.

Data Format for Data Transfer
There are four types of data formats that you can select using the
:WAVeform:FORMat command: ASCii, BYTE, WORD, and BINary. Refer
to the FORMat command in this chapter for more information on data formats.

30-6

Waveform Commands
BANDpass?

BANDpass?

Query :WAVeform:BANDpass?

The :WAVeform:BANDpass? query returns an estimate of the maximum and
minimum bandwidth limits of the source waveform. The bandwidth limits are
computed as a function of the coupling and the selected filter mode. The cutoff
frequencies are derived from the acquisition path and software filtering.

Returned Format [:WAVeform:BANDpass]<lower_cutoff>,<upper_cutoff><NL>

<lower_cutoff> Minimum frequency passed by the acquisition system.

<upper_cutoff> Maximum frequency passed by the acquisition system.

Example This example places the estimated maximum and minimum bandwidth limits of the
source waveform in the string variable, Bandwidth$, then prints the contents of the
variable to the computer's screen.
10 DIM Bandwidth$[50]!Dimension variable
20 OUTPUT 707;":WAVEFORM:BANDPASS?"
30 ENTER 707;Bandwidth$
40 PRINT Bandwidth$
50 END

30-7

Waveform Commands
BYTeorder

BYTeorder

Command :WAVeform:BYTeorder {MSBFirst | LSBFirst}

The :WAVeform:BYTeorder command selects the order in which bytes are transferred
to and from the oscilloscope using WORD and LONG formats. If MSBFirst is
selected, the most significant byte is transferred first. Otherwise, the least significant
byte is transferred first. The default setting is MSBFirst.

Example This example sets up the oscilloscope to send the most significant byte first during
data transmission.
10 OUTPUT 707;":WAVEFORM:BYTEORDER MSBFIRST"
20 END

Query :WAVeform:BYTeorder?

The :WAVeform:BYTeorder? query returns the current setting for the byte order.

Returned Format [:WAVeform:BYTeorder] {MSBFirst | LSBFirst}<NL>

Example This example places the current setting for the byte order in the string variable,
Setting$, then prints the contents of the variable to the computer's screen.
10 DIM Setting$[10]!Dimension variable
20 OUTPUT 707;":WAVEFORM:BYTEORDER?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

The data transfer rate is faster using the LSBFirst byte order.

MSBFirst is for microprocessors, where the most significant byte resides at the
lower address. LSBFirst is for microprocessors, where the least significant byte
resides at the lower address.

30-8

Waveform Commands
COMPlete?

COMPlete?

Query :WAVeform:COMPlete?

The :WAVeform:COMPlete? query returns the percent of time buckets that are
complete for the currently selected waveform.
For the NORMal, RAW, and INTerpolate waveform types, the percent complete is
the percent of the number of time buckets that have data in them, compared to the
memory depth.
For the AVERage waveform type, the percent complete is the number of time buckets
that have had the specified number of hits divided by the memory depth. The hits are
specified by the :ACQuire:AVERage:COUNt command.
For the VERSus waveform type, percent complete is the least complete of the X-axis
and Y-axis waveforms.

Returned Format [:WAVeform:COMPlete] <criteria><NL>

<criteria> 0 to 100 percent, rounded down to the closest integer.

Example This example places the current completion criteria in the string variable, Criteria$,
then prints the contents of the variable to the computer's screen.
10 DIM Criteria$[10]!Dimension variable
20 OUTPUT 707;":WAVEFORM:COMPLETE?"
30 ENTER 707;Criteria$
40 PRINT Criteria$
50 END

30-9

Waveform Commands
COUNt?

COUNt?

Query :WAVeform:COUNt?

The :WAVeform:COUNt? query returns the fewest number of hits in all of the time
buckets for the currently selected waveform. For the AVERage waveform type, the
count value is the fewest number of hits for all time buckets. This value may be less
than or equal to the value specified with the :ACQuire:AVERage:COUNt command.
For the NORMal, RAW, INTerpolate, and VERSus waveform types, the count value
returned is one, unless the data contains holes (sample points where no data is
acquired). If the data contains holes, zero is returned.

Returned Format [:WAVeform:COUNt] <number><NL>

<number> An integer. Values range from 0 to 1 for NORMal, RAW, or INTerpolate types, and
VERSus type. If averaging is on values range from 0 to 65536.

Example This example places the current count field value in the string variable, Count$, then
prints the contents of the variable to the computer's screen.
10 DIM Count$[50]!Dimension variable
20 OUTPUT 707;":WAVEFORM:COUNT?"
30 ENTER 707;Count$
40 PRINT Count$
50 END

30-10

Waveform Commands
COUPling?

COUPling?

Query :WAVeform:COUPling?

The :WAVeform:COUPling? query returns the input coupling of the currently selected
source.

Returned Format [:WAVeform:COUPling] {AC | DC | DCFifty | LFReject} <NL>

Example This example places the current input coupling of the selected waveform in the string
variable, Setting$, then prints the contents of the variable.
10 DIM Setting$[10]!Dimension variable
20 OUTPUT 707;":WAVEFORM:COUPLING?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

See Also The :CHANnel<N>:INPut command sets the coupling for a particular channel.
You can use the :WAVeform:SOURce command to set the source for the coupling
query.

Source Return Value

CGRade Coupling of the lowest numbered channel that is on.

HISTogram The coupling of the selected channel. For functions, the coupling
of the lowest numbered channel in the function.

CHANnel The coupling of the channel number

FUNCtion The coupling of the lowest numbered channel in the function

WMEMory The coupling value of the source that was loaded into the waveform
memory. If channel 1 was loaded, it would be the channel 1
coupling value.

30-11

Waveform Commands
DATA?

DATA?

Query :WAVeform:DATA? [<start>[,<size>]]

The :WAVeform:DATA? query outputs waveform data to the computer over the GPIB
Interface. The data is copied from a waveform memory, function, channel, bus, pod,
or digital channel previously specified with the :WAVeform:SOURce command.

The preamble queries, such as :WAVeform:XINCrement, can be used to determine
the vertical scaling, the horizontal scaling, and so on.

<start> An integer value which is the starting point in the source memory which is the first
waveform point to transfer.

<size> An integer value which is the number of points in the source memory to transfer. If
the size specified is greater than the amount of available data then the size is adjusted
to be the maximum available memory depth minus the <start> value.

Streaming Off
The returned waveform data response depends upon the setting of the
:WAVeform:STReaming command. When the data format is BYTE and streaming is
off, the number of waveform points must be less than 1,000,000,000 or an error occurs
and only 999,999,999 bytes of data are sent. When the data format is WORD and
streaming is off, the number of waveform points must be less than 500,000,000 or an
error occurs and only 499,999,999 words of data are sent.
The returned waveform data in response to the :WAVeform:DATA? query is in the
following order.

 The data’s returned response depends upon the setting of the
:WAVeform:STReaming command. See see “Streaming Off” on page 30-11 or
see “Returned Format” on page 30-13 for more detail.

If the waveform data is ASCII formatted, then waveform data is separated by
commas.

30-12

Waveform Commands
DATA?

Streaming On
When streaming is on there is no limit on the number of waveform data points that
are returned. It is recommended that any new programs use streaming on to send
waveform data points. The waveform data response when streaming is on is as
follows.

n Length =
L

0 1 2 ... L-1 END

1st byte, word, or ASCII character of waveform data

Number of bytes of waveform data to follow

Last byte, word, or ASCII
character of waveform data

2nd byte, word, or ASCII character of waveform data

Number of bytes in Length block

Start of response Termination character

30-13

Waveform Commands
DATA?

Returned Format [:WAVeform:DATA] <block_data>[,<block_data>]<NL>

BASIC Example This example places the current waveform data from channel 1 of the array Wdata in
the word format.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":WAVEFORM:SOURCE CHANNEL1!Select source
30 OUTPUT 707;":WAVEFORM:FORMAT WORD"!Select word format
40 OUTPUT 707;":WAVEFORM:DATA?"
50 ENTER 707 USING "#,1A";Pound_sign$
60 ENTER 707 USING "#,1D";Header_length
70 ENTER 707 USING "#,"&VAL$(Header_length)&"D";Length
80 Length = Length/2!Length in words
90 ALLOCATE INTEGER Wdata(1:Length)
100 ENTER 707 USING "#,W";Wdata(*)
110 ENTER 707 USING "-K,B";End$
120 END

0 B1 B2 B3 ... L-1 END

1st byte, word, or ASCII character of waveform data

Last byte, word, or ASCII
character of waveform data

2nd byte, word, or ASCII character of waveform data

Number is zero

Start of response Termination character

3rd byte, word, or ASCII character of waveform data

30-14

Waveform Commands
DATA?

The format of the waveform data must match the format previously specified by the
:WAVeform:FORMat, :WAVeform:BYTeorder, and :WAVeform:PREamble
commands.

HP BASIC Image Specifiers

is an HP BASIC image specifier that terminates the statement when the last
ENTER item is terminated. EOI and line feed are the item terminators.

1A is an HP BASIC image specifier that places the next character received in
a string variable.

1D is an HP BASIC image specifier that places the next character in a numeric
variable.

W is an HP BASIC image specifier that places the data in the array in word
format with the first byte entered as the most significant byte.

-K is an HP BASIC image specifier that places the block data in a string,
including carriage returns and line feeds until EOI is true or when the
dimensioned length of the string is reached.

B is an HP BASIC specifier that enters the next byte in a variable.

30-15

Waveform Commands
DATA?

DATA? Example for
Analog Channels

The following C example shows how to transfer WORD formatted waveform data
for analog channels to a computer.

/* readdata. c */

/* Reading Word format example. This program demonstrates the order
 * of commands suggested for operation of the Infiniium oscilloscope
 * via LAN. This program initializes the oscilloscope, acquires data,
 * transfers data in WORD format, converts the data into time and
 * voltage values, and stores the data in a file as comma-separated
 * ascii values. This format is useful for spreadsheet and MATLAB
 * applications. It requires a waveform which is connected to Channel 1.
*/

#include <stdio.h> /* location of: printf() */
#include <stdlib.h> /* location of: atof(), atoi() */
#include <string.h> /* location of: strlen() */
#include "sicl.h"

/* Prototypes */
int InitIO(void);
void WriteIO(char *buffer);
unsigned long ReadByte(char *buffer, unsigned long BytesToRead);
unsigned long ReadWord(char *buffer, int *reason,
 unsigned long BytesToRead);
void ReadDouble(double *buffer);
void CloseIO(void);
void AcquireData(void);
void GetVoltageConversionFactors(double *yInc, double *yOrg);
void GetTimeConversionFactors(double *xInc, double *xOrg);
void WriteCsvToFile(unsigned long ByteToRead);
void SetupDataTransfer(void);

/* Defines */
#define MAX_LENGTH 10000000
#define INTERFACE "lan[130.29.70.247]:inst0"
#define TRUE 1
#define FALSE 0
#define IO_TIMEOUT 20000

30-16

Waveform Commands
DATA?

/* Globals */
INST bus;
INST scope;
char buffer[MAX_LENGTH]; /* Buffer for reading data */
double xOrg=0L, xInc=0L; /* Values used to create time data */
double yOrg=0L, yInc=0L; /* Values used to convert data to volts */

void main(void)
{
 unsigned long BytesToRead;

if (!InitIO())
{

exit(1);
}

 AcquireData();

 WriteIO(":WAVeform:FORMat WORD"); /* Setup transfer format */
 WriteIO(":WAVeform:BYTeorder LSBFirst"); /* Setup transfer of
 LSB first */
 WriteIO(":WAVeform:SOURce CHANnel1"); /* Waveform data source
 channel 1 */
 WriteIO(":WAVeform:STReaming 1"); /* Turn on waveform
 streaming of data */

 GetVoltageConversionFactors(&yInc, &yOrg);
 GetTimeConversionFactors(&xInc, &xOrg);
 BytesToRead = MAX_LENGTH;
 SetupDataTransfer();
 WriteCsvToFile(BytesToRead);

 CloseIO();

}

30-17

Waveform Commands
DATA?

/***
 * Function name: InitIO
 * Parameters: none
 * Return value: TRUE if successfull otherwise FALSE
 * Description: This routine initializes the SICL environment.
 * It sets up error handling, opens both an interface
 * and device session, sets timeout values, clears
 * the LAN interface card, and clears the
 * oscilloscope's LAN interface by performing a
 * Selected Device Clear.
***/

int InitIO(void)
{

ionerror(I_ERROR_EXIT); /* set-up interface error handling */

bus = iopen(INTERFACE); /* open interface session */
if (bus == 0)
{

printf("Bus session invalid\n");
return FALSE;

}

itimeout(bus, IO_TIMEOUT); /* set bus timeout */
iclear(bus); /* clear the interface */

scope = bus; /* open the scope device session */

return TRUE;
}

30-18

Waveform Commands
DATA?

/**
 * Function name: WriteIO
 * Parameters: char *buffer which is a pointer to the character
 * string to be output
 * Return value: none
 * Description: This routine outputs strings to the oscilloscope
 * device session using SICL commands.
***/

void WriteIO(char *buffer)
{

unsigned long actualcnt;
unsigned long BytesToRead;
int send_end = 1;

BytesToRead = strlen(buffer);

iwrite(scope, buffer, BytesToRead, send_end, &actualcnt);

}

30-19

Waveform Commands
DATA?

/***
 * Function name: ReadByte
 * Parameters: char *buffer which is a pointer to the array to
 * store the read bytes
 * unsigned long BytesToRead which indicates the
 * maximum number of bytes to read
 * Return value: integer which indicates the actual number of bytes
 * read
 * Description: This routine inputs strings from the scope device
 * session using SICL commands.
**/

unsigned long ReadByte(char *buffer, unsigned long BytesToRead)
{

unsigned long BytesRead;
int reason;

BytesRead = BytesToRead;

iread(scope, buffer, BytesToRead, &reason, &BytesRead);

 return BytesRead;
}

30-20

Waveform Commands
DATA?

/**
 * Function name: ReadWord
 * Parameters: short *buffer which is a pointer to the word array
 * to store the bytes read
 * int reason which is the reason that the read
 * terminated
 * unsigned long BytesToRead which indicates the
 * maximum number of bytes to read
 * Return value: integer which indicates the actual number of
 * bytes read
 * Description: This routine inputs an array of short values from
 * the oscilloscope device session using SICL commands.
***/

unsigned long ReadWord(char *buffer, int *reason,
 unsigned long BytesToRead)
{
 long BytesRead;

 iread(scope, buffer, BytesToRead, reason, &BytesRead);

 return BytesRead;
}

30-21

Waveform Commands
DATA?

/**
 * Function name: ReadDouble
 * Parameters: double *buffer which is a pointer to the float
 * value to read
 * Return value: none
 * Description: This routine inputs a float value from the
 * oscilloscope device session using SICL commands.
***/

void ReadDouble(double *buffer)
{
 iscanf(scope, "%lf", buffer);
}

/**
 * Function name: close_IO
 * Parameters: none
 * Return value: none
 * Description: This routine closes device and interface sessions
 * for the SICL environment, and calls the routine
 * _siclcleanup which de-allocates resources
 * used by the SICL environment.
***/

void CloseIO(void)
{

 iclose(scope); /* close device session */
 iclose(bus); /* close interface session */

 _siclcleanup(); /* required for 16-bit applications */

}

30-22

Waveform Commands
DATA?

/**
 * Function name: AcquireData
 * Parameters: none
 * Return value: none
 * Description: This routine acquires data using the current
 * oscilloscope settings.
***/

void AcquireData(void)
{

/*
 * The root level :DIGitize command is recommended for

 * acquiring new waveform data. It initialize's the
 * oscilloscope's data buffers, acquires new data,
 * and ensures that acquisition criteria are met before the
 * acquisition is stopped. Note that the display is
 * automatically turned off when you use this form of the
 * :DIGitize command and must be turned on to view the
 * captured data on screen.

*/

WriteIO(":DIGitize CHANnel1");
WriteIO(":CHANnel1:DISPlay ON");

}

30-23

Waveform Commands
DATA?

/**
 * Function name: GetVoltageConversionFactors
 * Parameters: double yInc which is the voltage difference
 * represented by adjacent waveform data digital codes.
 * double yOrg which is the voltage value of digital
 * code 0.
 * Return value: none
 * Description: This routine reads the conversion factors used to
 * convert waveform data to volts.
***/

void GetVoltageConversionFactors(double *yInc, double *yOrg)
{

/* Read values which are used to convert data to voltage values */

WriteIO(":WAVeform:YINCrement?");
ReadDouble(yInc);

 WriteIO(":WAVeform:YORigin?");

ReadDouble(yOrg);

}

30-24

Waveform Commands
DATA?

/***
 * Function name: SetupDataTransfer
 * Parameters: none
 * Return value: none
 * Description: This routine sets up the waveform data transfer and
 * removes the # and 0 characters.
**/

void SetupDataTransfer(void)
{
 char cData;

 WriteIO(":WAVeform:DATA?"); /* Request waveform data */

 /* Find the # character */

 do
 {
 ReadByte(&cData, 1L);
 } while (cData != '#');

 /* Find the 0 character */

 do
 {
 ReadByte(&cData, 1L);
 } while (cData != '0');
}

30-25

Waveform Commands
DATA?

/***
 * Function name: GetTimeConversionFactors
 * Parameters: double xInc which is the time between consecutive
 * sample points.
 * double xOrg which is the time value of the first
 * data point.
 * Return value: none
 * Description: This routine transfers the waveform conversion
 * factors for the time values.
**/

void GetTimeConversionFactors(double *xInc, double *xOrg)
{

/* Read values which are used to create time values */

 WriteIO(":WAVeform:XINCrement?");
 ReadDouble(xInc);

 WriteIO(":WAVeform:XORigin?");
 ReadDouble(xOrg);

}

30-26

Waveform Commands
DATA?

/***
 * Function name: WriteCsvToFile
 * Parameters: unsigned long BytesToRead which is the number of
 * data points to read
 * Return value: none
 * Description: This routine stores the time and voltage
 * information about the waveform as time and
 * voltage separated by commas to a file.
**/

void WriteCsvToFile(unsigned long BytesToRead)
{
 FILE *fp;
 int done = FALSE;
 int reason = 0;
 unsigned long i;
 unsigned long j = 0;
 unsigned long BytesRead = 0L;
 double Time;
 double Volts;
 short *buff;

 fp = fopen("pairs.csv", "wb"); /* Open file in binary mode - clear
 file if it already exists */

 if (fp != NULL)
 {
 while(!done)

 {
 BytesRead = ReadWord(buffer, &reason, BytesToRead);

 switch(reason)
 {
 case I_TERM_MAXCNT:
 done = FALSE;
 break;
 case I_TERM_END:
 done = TRUE;
 break;

30-27

Waveform Commands
DATA?

 case I_TERM_CHR:
 done = TRUE;
 break;
 default:
 done = TRUE;
 break;
 };

 buff = (short *) buffer;

 for(i = 0; i < ((BytesRead - 1)/2); i++)
 {
 Time = (j * xInc) + xOrg; /* calculate time */
 j = j + 1;

 Volts = (buff[i] * yInc) + yOrg;/* calculate voltage */

 fprintf(fp, "%e,%f\n", Time, Volts);
 }

 }
 fclose(fp);

 }
 else
 {
 printf("Unable to open file 'pairs.csv'\n");
 }
}

30-28

Waveform Commands
DATA? Example for Digital Channels

DATA? Example for Digital Channels

The following C example shows how to transfer both BYTE and WORD formatted
waveform data for digital channels to a computer. There is a file on the Infiniium
Oscilloscope Example Programs disk called readdig.c in the c directory that contains
this program.

/* readdig. c */

/* Reading Byte and Word format Example. This program demonstrates the order of
 commands suggested for operation of the Infiniium oscilloscope by LAN or GPIB.
 This program initializes the scope, acquires data, transfers data in both the
 BYTE and WORD formats, converts the data into hex, octal, binary and time values,
 and stores the data in a file as comma-separated values. This format is useful
 for spreadsheet applications.
*/

#include <stdio.h> /* location of: printf() */
#include <stdlib.h> /* location of: atof(), atoi() */
#include <string.h> /* location of: strlen() */
#include "sicl.h"

/* Prototypes */
int InitIO(void);
void WriteIO(char *buffer);
unsigned long ReadByte(char *buffer, unsigned long BytesToRead);
unsigned long ReadWord(short *buffer, unsigned long BytesToRead);
void ReadDouble(double *buffer);
void CloseIO(void);
void AcquireData(void);
void GetTimeConversionFactors(void);
void CreateTimeData(unsigned long AcquiredLength,
 double *TimeValues);
void WriteCsvToFile(double *TimeValues, unsigned short *wordData,
 unsigned char *byteData, unsigned long AcquiredLength);
unsigned long SetupDataTransfer(double lTime, double rTime);
int Round(double number);

/* Defines */
#define MAX_LENGTH 8192000

#define LAN

#ifdef LAN
 #define INTERFACE "lan[130.29.71.202]:hpib7,7"
#else
 #define INTERFACE "hpib7"

30-29

Waveform Commands
DATA? Example for Digital Channels

#endif

#define DEVICE_ADDR "hpib7,7"
#define TRUE 1
#define FALSE 0
#define IO_TIMEOUT 20000

/* Globals */
INST bus;
INST scope;
double TimeValues[MAX_LENGTH]; /* Time value of data */
unsigned short wordData[MAX_LENGTH/2];/* Buffer for reading word format data */
unsigned char byteData[MAX_LENGTH]; /* Buffer for reading byte format data */
double xOrg, xInc; /* Values necessary to create time data */

int Start;

void main(void)
{
 char Term;
 unsigned long BytesToRead;

 if (!InitIO()) {
 exit(1);
 }

 AcquireData();

 WriteIO(":SYStem:HEADer OFF");
 WriteIO(":SYStem:LONGform OFF");
 WriteIO(":WAVeform:BYTEorder LSBFirst"); /* Setup byte order */
 WriteIO(":WAVeform:FORMat WORD"); /* Setup transfer format */
 WriteIO(":WAVeform:SOURce POD1"); /* Waveform data source pod 1 */

 GetTimeConversionFactors();

 BytesToRead = SetupDataTransfer(-25E-6, 25E-6);
 ReadWord(wordData, BytesToRead);
 ReadByte(&Term, 1L); /* Read termination character */

 WriteIO(":WAVeform:FORMat BYTE"); /* Setup transfer format */

 BytesToRead = SetupDataTransfer(-25E-6, 25E-6);
 ReadByte(byteData, BytesToRead);
 ReadByte(&Term, 1L); /* Read termination character */

 CreateTimeData(BytesToRead, TimeValues);

30-30

Waveform Commands
DATA? Example for Digital Channels

 WriteCsvToFile(TimeValues, wordData, byteData, BytesToRead);

 CloseIO();

}

/***
* Function name: InitIO
* Parameters: none
* Return value: none
* Description: This routine initializes the SICL environment. It sets up
* errorhandling, opens both an interface and device session,
* sets timeout values, clears the GPIB interface card, and
* clears the oscilloscope's GPIB card by performing a
* Selected Device Clear.
***/

int InitIO(void)
{

 ionerror(I_ERROR_EXIT); /* set-up interface error handling */

 bus = iopen(INTERFACE); /* open interface session */
 if (bus == 0) {
 printf("Bus session invalid\n");
 return FALSE;
 }

 itimeout(bus, IO_TIMEOUT); /* set bus timeout */
 iclear(bus); /* clear the interface */

#ifdef LAN
 scope = bus;
#else
 scope = iopen(DEVICE_ADDR); /* open the scope device session */
 if (scope == 0) {
 printf("Scope session invalid\n");
 iclose(bus); /* close interface session */
 _siclcleanup(); /* required for 16-bit applications */
 return FALSE;
 }

 itimeout(scope, IO_TIMEOUT); /* set device timeout */
 iclear(scope); /* perform Selected Device Clear on oscilloscope */
#endif

 return TRUE;
}

30-31

Waveform Commands
DATA? Example for Digital Channels

/***
* Function name: WriteIO
* Parameters: char *buffer which is a pointer to the character string to
* be output
* Return value: none
* Description: This routine outputs strings to the oscilloscope device
* session using SICL commands.
***/

void WriteIO(char *buffer)
{
 unsigned long actualcnt;
 unsigned long BytesToWrite;
 int send_end = 1;

 BytesToWrite = strlen(buffer);

 iwrite(scope, buffer, BytesToWrite, send_end, &actualcnt);

}

/**
* Function name: ReadByte
* Parameters: char *buffer which is a pointer to the array to store
* the read bytes unsigned long BytesToRead which indicates
* the maximum number of bytes to read
* Return value: integer which indicates the actual number of bytes read
* Description: This routine inputs strings from the scope device session
* using SICL commands.
**/

unsigned long ReadByte(char *buffer, unsigned long BytesToRead)
{
 unsigned long BytesRead=0L;
 int reason;

 BytesRead = BytesToRead;
 iread(scope, buffer, BytesToRead, &reason, &BytesRead);

 return BytesRead;
}

30-32

Waveform Commands
DATA? Example for Digital Channels

/**
* Function name: ReadWord
* Parameters: short *buffer which is a pointer to the word array to store
* the bytes read unsigned long BytesToRead which indicates
* the maximum number of bytes to read
* Return value: integer which indicates the actual number of bytes read
* Description: This routine inputs an array of short values from the
* oscilloscope device session using SICL commands.
**/

unsigned long ReadWord(short *buffer, unsigned long BytesToRead)
{
 long BytesRead=0L;
 int reason;

 BytesRead = BytesToRead;
 iread(scope, (char *) buffer, BytesToRead, &reason, &BytesRead);

 return BytesRead;
}

/**
* Function name: ReadDouble
* Parameters: double *buffer which is a pointer to the float value to read
* Return value: none
* Description: This routine inputs a float value from the oscilloscope
* device session using SICL commands.
***/

void ReadDouble(double *buffer)
{
 int error;
 error = iscanf(scope, "%lf", buffer);
}
/**
* Function name: close_IO
* Parameters: none
* Return value: none
* Description: This routine closes device and interface sessions for
* the SICL environment, and calls the routine _siclcleanup
* which de-allocates resources used by the SICL environment.
**/

void CloseIO(void)
{

 iclose(scope); /* close device session */
 iclose(bus); /* close interface session */

30-33

Waveform Commands
DATA? Example for Digital Channels

 _siclcleanup(); /* required for 16-bit applications */

}

/**
* Function name: AcquireData
* Parameters: none
* Return value: none
* Description: This routine acquires data using the current
* oscilloscope settings.
**/

void AcquireData(void)
{
 /*
 * The root level :DIGitize command is recommended for acquiring new
 * waveform data. It initialize's the oscilloscope's data buffers,
 * acquires new data, and ensures that acquisition criteria are met
 * before the acquisition is stopped. Note that the display is
 * automatically turned off when you use this form of the
 * :DIGitize command and must be turned on to view the captured data
 * on screen.
 */

 WriteIO(":DIGitize POD1");
 WriteIO(":POD1:DISPlay ON");

}

30-34

Waveform Commands
DATA? Example for Digital Channels

/**
* Function name: SetupDataTransfer
* Parameters: double lTime which is the time value of the first
* waveform memory location of data.
* double rTime which is the time value of the last
* waveform memory location of data.
* Return value: Number of bytes of waveform data to read.
* Description: This routine sets up the waveform data transfer and gets
* the number of bytes to be read. The beginning of data
* starts with the # character followed by a number which
* tells how many bytes to read for the integer which is the
* total number of data bytes that are being transfered.
* Following this is the waveform data. For example, if 1024
* bytes of waveform data is being transfered then this
* information will be as follows:
* #41024 <1024 data bytes>
**
********/

unsigned long SetupDataTransfer(double lTime, double rTime)
{
 unsigned long BytesToRead;
 char header_str[8];
 char cData;
 unsigned long BytesRead;
 int Size;
 char Range[100];

 /* Find the index value of the first data memory location */

 Start = Round((lTime - xOrg)/xInc);
 if (Start < 1) {
 Start = 1;
 }

 /* Find the number of data bytes that you want */

 Size = Round((rTime - lTime)/xInc);

 sprintf(Range, ":WAVeform:DATA? %d,%d", Start, Size);
 WriteIO(Range); /* Request waveform data */

 /* Find the # character */

 do {
 ReadByte(&cData, 1L);
 } while (cData != '#');

30-35

Waveform Commands
DATA? Example for Digital Channels

 /* Read the next byte which tells how many bytes to read for the number
 * of waveform data bytes to transfer value.
 */

 ReadByte(&cData, 1L);
 BytesToRead = cData - '0'; /* Convert to a number */

 /* Reads the number of data bytes that will be transfered */

 BytesRead = ReadByte(header_str, BytesToRead);
 header_str[BytesRead] = '\0';
 BytesToRead = atoi(header_str);

 return BytesToRead;

}

/**
* Function name: GetTimeConversionFactors
* Parameters: none
* Return value: none
* Description: This routine transfers the waveform conversion
* factors for the time values.
***/

Void GetTimeConversionFactors(void)
{

 /* Read values which are used to create time values */

 WriteIO(":WAVeform:XINCrement?");
 ReadDouble(&xInc);

 WriteIO(":WAVeform:XORigin?");
 ReadDouble(&xOrg);

}

30-36

Waveform Commands
DATA? Example for Digital Channels

/**
* Function name: CreateTimeData
* Parameters: unsigned long AcquiredLength which is the number of data
* points
* double TimeValues is a pointer to the array where time
* values are stored
* Return value: none
* Description: This routine converts the data to time values using
* the values that describe the waveform. These values are stored
* in global variables.
***/

void CreateTimeData(unsigned long AcquiredLength, double *TimeValues)
{
 unsigned long i;

 for (i = 0; i < AcquiredLength; i++) {
 TimeValues[i] =((Start + i) * xInc) + xOrg; /* calculate time values */
 }

}

30-37

Waveform Commands
DATA? Example for Digital Channels

/**
* Function name: WriteCsvToFile
* Parameters: double *TimeValues which is a pointer to an array of
* calculated time values
* unsigned short *wordData which is a pointer to an array of
* word format digital values
* unsigned char *byteData which is a pointer to an array of
* byte format digital values
* unsigned long AcquiredLength which is the number of data
* points read
* Return value: none
* Description: This routine stores the time and digital information about
* the waveform as time, word format, and byte format
* separated by commas to a file.
**/

void WriteCsvToFile(double *TimeValues, unsigned short *wordData,
 unsigned char *byteData, unsigned long AcquiredLength)
{
 FILE *fp;
 char Binary[9];
 unsigned long i;
 int j;
 int k;

 fp = fopen("digital.csv", "wb"); /* Open file in binary mode - clear file
 if it already exists */

 if (fp != NULL) {

 fprintf(fp, "Time,Decimal Word Data,Hex Word Data,Hex Byte Data,Binary Byte
Data\n");
 Binary[8] = '\0';

 for (i = 0; i < AcquiredLength; i++) {

 // Create the binary formated byte data
 for (j = 7, k = 0; j >= 0; j--, k++) {
 Binary[k] = ((byteData[i] & (1 << j)) >> j) + '0';
 }

 fprintf(fp, "%e,%d,%04X,%02X,%s\n", TimeValues[i], wordData[i], wordData[i],
 byteData[i], Binary);
 }

 fclose(fp);
 }
 else {

30-38

Waveform Commands
DATA? Example for Digital Channels

 printf("Unable to open file 'digital.csv'\n");
 }

}

/**
* Function name: Round
* Parameters: double number which is a floating point number
* to be converted.
* Return value: The rounded integer value for the number parameter.
* Description: This routine takes a floating point number and creates an
* integer.
***/

int Round(double number)
{
 if (number < 0.0f) {
 return ((int) (number - 0.5f));
 }
 else {
 return ((int) (number + 0.5f));
 }
}

30-39

Waveform Commands
DATA? Example for Digital Channels

Understanding WORD and BYTE Formats
Before you can understand how the WORD and BYTE downloads work, it is
necessary to understand how Infiniium creates waveform data.

Analog-to-digital
Conversion Basics

The input channel of every digital sampling oscilloscope contains an analog-to-digital
converter (ADC) as shown in figure 0-1. The 8-bit ADC in Infiniium consists of 256
voltage comparators. Each comparator has two inputs. One input is connected to a
reference dc voltage level and the other input is connected to the channel input. When
the voltage of the waveform on the channel input is greater than the dc level, then the
comparator output is a 1 otherwise the output is a 0. Each of the comparators has a
different reference dc voltage. The output of the comparators is converted into an 8-
bit integer by the encoder.

Figure 0-1

Block Diagram of an ADC

_

+

_

+

..

.. ..

_

+

_

+

Encoder

Channel Input

Vref

8 bits

-Vref

30-40

Waveform Commands
DATA? Example for Digital Channels

All ADCs have non-linearity errors which, if not corrected, can give less accurate
vertical measurement results. For example, the non-linearity error for a 3-bit ADC
is shown in the following figure.

Figure 0-2

ADC Non-linearity Errors for a 3-bit ADC

The graph on the left shows an ADC which has no non-linearity errors. All of the
voltage levels are evenly spaced producing output codes that represent evenly spaced
voltages. In the graph on the right, the voltages are not evenly spaced with some being
wider and some being narrower than the others.

Normalized Analog Input

1/
8F

S

2/
8F

S

3/
8F

S

4/
8F

S

5/
8F

S

6/
8F

S

7/
8F

S FS0

001

010

011

100

101

110

111

000

Ou
tp

ut
 D

ig
ita

l N
um

be
r

Ideal ADC Conversion

Normalized Analog Input
1/

8F
S

2/
8F

S

3/
8F

S

4/
8F

S

5/
8F

S

6/
8F

S

7/
8F

S FS0

001

010

011

100

101

110

111

000

Ou
tp

ut
 D

ig
ita

l N
um

be
r

Nonlinearity
Errors

Non-ideal ADC Conversion

FS = the full scale
voltage of the ADC

30-41

Waveform Commands
DATA? Example for Digital Channels

When you calibrate your Infiniium, the input to each channel, in turn, is connected to
the Aux Out connector. The Aux Out is connected to a 16-bit digital-to-analog
convertor (DAC) whose input is controlled by Infiniium’s CPU. There are 65,536 dc
voltage levels that are produced by the 16-bit DAC at the Aux Out. At each dc voltage
value, the output of the ADC is checked to see if a new digital code is produced. When
this happens, a 16-bit correction factor is calculated for that digital code and this
correction factor is stored in a Calibration Look-up Table.

Figure 0-3

Data Flow in Infiniium

This process continues until all 256 digital codes are calibrated. The calibration
process removes most of the non-linearity error of the ADC which yields more
accurate vertical voltage values.
During normal operation of the oscilloscope, the output of the ADC is used as an
address to the Calibration Look-up Table which produces 16-bit data for the
oscilloscope to process and display. The output of the ADC is a signed 8-bit integer
and the output of the Calibration Look-up Table is a signed 16-bit integer. If the
amplitude of the input waveform is larger than the maximum dc reference level of the
ADC, the ADC will output the maximum 8-bit value that it can (255). This condition
is called ADC clipping. When the 255 digital code is applied to the Calibration Look-
up Table, a 16-bit value, such as 26,188 could be produced which represents an ADC
clipped value. This number will vary from one oscilloscope to the next.

D0

D1

D2

D3

D4

D5

D6

D7

Calibration
Digital

to
Analog

Converter

CPU
Aux Out

Channel In
Analog

to
Digital

Converter

Calibration
Look-up

Table 16 bits

16 bits

16 bits

8 bits

ASCII
Format

WORD
Format

BYTE
Format

Stream of
8 bit

Characters

30-42

Waveform Commands
DATA? Example for Digital Channels

WORD and BYTE
Data Formats

When downloading the waveform data in WORD format, the 16-bit signed integer
value for each data point is sent in two consecutive 8-bit bytes over GPIB. Whether
the least significant byte (LSB) or the most significant byte (MSB) is sent first depends
on the byte order determined by the BYTeorder command.
Before downloading the waveform data in BYTE format, each 16-bit signed integer
is converted into an 8-bit signed integer. Because there are more possible 16-bit
integers than there are 8-bit integers, a range of 16-bit integers is converted into single
8-bit numbers. For example, the following 16-bit numbers are all converted into one
8-bit number.

This conversion is what makes the BYTE download format less accurate than the
WORD format.

16-bit integers
26,200
26,188
26,160
26,100

8-bit integer
104➯

30-43

Waveform Commands
FORMat

FORMat

Command :WAVeform:FORMat {ASCii | BINary | BYTE | WORD}

The :WAVeform:FORMat command sets the data transmission mode for waveform
data output. This command controls how the data is formatted when it is sent from
the oscilloscope, and pertains to all waveforms. The default format is ASCii.
Histograms can only be ACSii or BINary.
Digital busses and pod-all are not compatible with BYTE.

Selecting a Format

ASCii ASCii-formatted data consists of waveform data values converted to the currently
selected units, such as volts, and are output as a string of ASCII characters with each
value separated from the next value by a comma. The values are formatted in floating
point engineering notation. For example:
8.0836E+2,8.1090E+2,...,-3.1245E-3
The ASCii format does not send out the header information indicating the number of
bytes being downloaded.
In ASCii format:

• The value “99.999E+36” represents a hole value. A hole can occur when you
are using the equivalent time sampling mode when during a single acquisition
not all of the acquisition memory locations contain sampled waveform data. It
can take several acquisitions in the equivalent time sampling mode to fill all of
the memory locations.

Type Advantages Disadvantages

ASCii Data is returned as voltage values and
does not need to be converted and is as
accurate as WORD format.

Very slow data download rate.

BYTE Data download rate is twice as fast as the
WORD format.

Data is less accurate than the WORD
format for analog channels.

WORD Data is the most accurate for analog
channels.

Data download rate takes twice as long
as the BYTE format.

BINary This format can be used for analog
channels and for HISTogram source.

Data download rate takes twice as long
as the BYTE format for analog channels.

30-44

Waveform Commands
FORMat

BYTE BYTE-formatted data is formatted as signed 8-bit integers. If you use BASIC, you
need to create a function to convert these signed bits to signed integers. In BYTE
format:

• The value 125 represents a hole value. A hole can occur when you are using
the equivalent time sampling mode when during a single acquisition not all of
the acquisition memory locations contain sampled waveform data. It can take
several acquisitions in the equivalent time sampling mode to fill all of the
memory locations.

The waveform data values are converted from 16-bit integers to 8-bit integers before
being downloaded to the computer. For more information see “Understanding WORD
and BYTE Formats” on page 30-39.

WORD WORD-formatted data is transferred as signed 16-bit integers in two bytes. If
:WAVeform:BYTeorder is set to MSBFirst, the most significant byte of each word is
sent first. If the BYTeorder is LSBFirst, the least significant byte of each word is sent
first. In WORD format:

• The value 31232 represents a hole level. A hole can occur when you are using
the equivalent time sampling mode when during a single acquisition not all of
the acquisition memory locations contain sampled waveform data. It can take
several acquisitions in the equivalent time sampling mode to fill all of the
memory locations.

For more information see “Understanding WORD and BYTE Formats” on page 30-
39.

BINary BINary-formatted data can be used with any SOURce. When a source is any valid
source except for histogram, the data is return in WORD format.
When the source is set to HISTogram, the data is transferred as signed 64-bit integers
in 8 bytes. The are no hole values in the histogram data.
If :WAVeform:BYTeorder is set to MSBFirst, the most significant byte of each long
word is sent first. If the BYTeorder is LSBFirst, the least significant byte of each long
word is sent first.

30-45

Waveform Commands
FORMat

Example This example selects the WORD format for waveform data transmission.
10 OUTPUT 707;":WAVEFORM:FORMAT WORD"
20 END

Query :WAVeform:FORMat?

The :WAVeform:FORMat? query returns the current output format for transferring
waveform data.

Returned Format [:WAVeform:FORMat] {ASCii | BINary | BYTE | WORD}<NL>

Example This example places the current output format for data transmission in the string
variable, Mode$, then prints the contents of the variable to the computer's screen.
10 DIM Mode$[50]!Dimension variable
20 OUTPUT 707;":WAVEFORM:FORMAT?"
30 ENTER 707;Mode$
40 PRINT Mode$
50 END

30-46

Waveform Commands
POINts?

POINts?

Query :WAVeform:POINts?

The :WAVeform:POINts? query returns the points value in the current waveform
preamble. The points value is the number of time buckets contained in the waveform
selected with the :WAVeform:SOURce command. If the
Sin(x)/x interpolation filter is enabled, the number of points can be larger than the
oscilloscope’s memory depth setting because the waveform includes the interpolated
points.

Returned Format [:WAVeform:POINts] <points><NL>

<points> An integer. See the :ACQuire:POINts command for a table of possible values.

Example This example places the current acquisition length in the numeric variable, Length,
then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":WAVEFORM:POINTS?"
30 ENTER 707;Length
40 PRINT Length
50 END

See Also The :ACQuire:POINts command in the ACQuire Commands chapter.

Turn Headers Off

When you are receiving numeric data into numeric variables, you should turn
the headers off. Otherwise, the headers may cause misinterpretation of
returned data.

30-47

Waveform Commands
PREamble

PREamble

Query :WAVeform:PREamble?

The :WAVeform:PREamble? query outputs a waveform preamble to the computer
from the waveform source, which can be a waveform memory or channel buffer.

Returned Format [:WAVeform:PREamble] <preamble_data><NL>

The preamble can be used to translate raw data into time and voltage values. The
following lists the elements in the preamble.

<preamble_
data>

<format>, <type>, <points>, <count> ,
<X increment>, <X origin>, < X reference>,
<Y increment>, <Y origin>, <Y reference>,
<coupling>,
<X display range>, <X display origin>,
<Y display range>, <Y display origin>,
<date>, <time>,
<frame model #>,
<acquisition mode>, <completion>,
<X units>, <Y units>,
<max bandwidth limit>, <min bandwidth limit>

<format> 0 for ASCii format.
1 for BYTE format.
2 for WORD format.
3 for LONG format.
4 for LONGLONG

<type> 1 RAW type.
2 AVERage type.
3 VHIStogram.
4 HHIStogram.
5 not used.
6 INTERPOLATE type.
7 not used.
8 not used.
9 not used.
10 PDETect.

<points> The number of data points or data pairs contained in the waveform data.
(See :ACQuire:POINts.)

30-48

Waveform Commands
PREamble

<count> For the AVERAGE waveform type, the count value is the fewest number of hits for
all time buckets. This value may be less than or equal to the value requested with the
:ACQuire:AVERage:COUNt command. For RAW and INTERPOLATE waveform
types, this value is 0 or 1. The count value is ignored when it is sent to the oscilloscope
in the preamble.
(See :WAVeform:TYPE and :ACQuire:COUNt.)

<X increment> The X increment is the duration between data points on the X axis. For time domain
waveforms, this is the time between points. If the value is zero then no data has been
acquired.
(See the :WAVeform:XINCrement? query.)

<X origin> The X origin is the X-axis value of the first data point in the data record. For time
domain waveforms, it is the time of the first point. This value is treated as a double
precision 64-bit floating point number. If the value is zero then no data has been
acquired.
(See the :WAVeform:XORigin? query.)

<X reference> The X reference is the data point associated with the X origin. It is at this data point
that the X origin is defined. In this oscilloscope, the value is always zero. (See the
:WAVeform:XREFerence? query.)

<Y increment> The Y increment is the duration between Y-axis levels. For voltage waveforms, it is
the voltage corresponding to one level. If the value is zero then no data has been
acquired.
(See the :WAVeform:YINCrement? query.)

<Y origin> The Y origin is the Y-axis value at level zero. For voltage waveforms, it is the voltage
at level zero. If the value is zero then no data has been acquired.
(See the :WAVeform:YORigin? query.)

<Y reference> The Y reference is the level associated with the Y origin. It is at this level that the Y
origin is defined. In this oscilloscope, this value is always zero.
(See the :WAVeform:YREFerence? query.)

<coupling> 0 for AC coupling.
1 for DC coupling.
2 for DCFIFTY coupling.
3 for LFREJECT coupling.

<X display
range>

The X display range is the X-axis duration of the waveform that is displayed. For
time domain waveforms, it is the duration of time across the display. If the value is
zero then no data has been acquired.
(See the :WAVeform:XRANge? query.)

30-49

Waveform Commands
PREamble

<X display
origin>

The X display origin is the X-axis value at the left edge of the display. For time domain
waveforms, it is the time at the start of the display. This value is treated as a double
precision 64-bit floating point number. If the value is zero then no data has been
acquired.
(See the :WAVeform:XDISplay? query.)

<Y display
range>

The Y display range is the Y-axis duration of the waveform which is displayed. For
voltage waveforms, it is the amount of voltage across the display. If the value is zero
then no data has been acquired.
(See the :WAVeform:YRANge? query.)

<Y display
origin>

The Y-display origin is the Y-axis value at the center of the display. For voltage
waveforms, it is the voltage at the center of the display. If the value is zero then no
data has been acquired.
(See the :WAVeform:YDISplay? query.)

<date> A string containing the date in the format DD MMM YYYY, where DD is the day, 1
to 31; MMM is the month; and YYYY is the year.

<time> A string containing the time in the format HH:MM:SS:TT, where HH is the hour, 0
to 23, MM is the minutes, 0 to 59, SS is the seconds, 0 to 59, and TT is the hundreds
of seconds, 0 to 99.

<frame_
model_#>

A string containing the model number and serial number of the oscilloscope in the
format of MODEL#:SERIAL#.

<acquisition
_mode>

0 for RTIMe mode.
1 for ETIMe mode.
2 not used.
3 for PDETect.

<completion> The completion value is the percent of time buckets that are complete. The completion
value is ignored when it is sent to the oscilloscope in the preamble. (See the
:WAVeform:COMPlete? query.)

<x_units>
<y_units>

0 for UNKNOWN units.
1 for VOLT units.
2 for SECOND units.
3 for CONSTANT units.
4 for AMP units.
5 for DECIBEL units.

<max bandwidth
limit>

<min bandwidth
limit>

The band pass consists of two values that are an estimation of the maximum and
minimum bandwidth limits of the source waveform. The bandwidth limit is computed
as a function of the selected coupling and filter mode.
(See the :WAVeform:BANDpass? query.)

30-50

Waveform Commands
PREamble

See Table 0-4 for descriptions of all the waveform preamble elements.

Example This example outputs the current waveform preamble for the selected source to the
string variable, Preamble$.
10 DIM Preamble$[250]!Dimension variable
20 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
30 OUTPUT 707;":WAVEFORM:PREAMBLE?"
40 ENTER 707 USING "-K";Preamble$
50 END

HP BASIC Image Specifiers

is an HP BASIC image specifier that suppresses the automatic output of the
EOL sequence following the last output item.

K is an HP BASIC image specifier that outputs a number or string in standard
form with no leading or trailing blanks.

Placing the Block in a String

-K is an HP BASIC image specifier that places the block data in a string,
including carriage returns and line feeds, until EOI is true, or when the
dimensioned length of the string is reached.

30-51

Waveform Commands
PREamble

Table 0-4 Waveform Preamble Elements

Element Description
Format The format value describes the data transmission mode for waveform

data output. This command controls how the data is formatted when
it is sent from the oscilloscope. (See :WAVeform:FORMat.)

Type This value describes how the waveform was acquired.
(See also the :WAVeform:TYPE? query.)

Points The number of data points or data pairs contained in the waveform
data.
(See :ACQuire:POINts.)

Count For the AVERAGE waveform type, the count is the number of averages
that have occurred. For RAW and INTERPOLATE waveform types,
this value is 0 or 1. The count value is ignored when it is sent to the
oscilloscope in the preamble. (See :WAVeform:TYPE and
:ACQuire:COUNt.)

X Increment The X increment is the duration between data points on the X axis.
For time domain waveforms, this is the time between points.
(See the :WAVeform:XINCrement? query.)

X Origin The X origin is the X-axis value of the first data point in the data record.
For time domain waveforms, it is the time of the first point. This value
is treated as a double precision 64-bit floating point number.
(See the :WAVeform:XORigin? query.)

X Reference The X reference is the data point associated with the X origin. It is at
this data point that the X origin is defined. In this oscilloscope, the value
is
always zero. (See the :WAVeform:XREFerence? query.)

Y Increment The Y increment is the duration between Y-axis levels. For voltage
waveforms, it is the voltage corresponding to one level.
(See the :WAVeform:YINCrement? query.)

Y Origin The Y origin is the Y-axis value at level zero. For voltage waveforms,
it is the voltage at level zero. (See the :WAVeform:YORigin? query.)

Y Reference The Y reference is the level associated with the Y origin. It is at this
level that the Y origin is defined. In this oscilloscope, this value is always
zero.
(See the :WAVeform:YREFerence? query.)

Coupling The input coupling of the waveform. The coupling value is ignored
when sent to the oscilloscope in the preamble. (See the
:WAVeform:COUPling? query.)

X Display Range The X display range is the X-axis duration of the waveform that is
displayed. For time domain waveforms, it is the duration of time across
the display.
(See the :WAVeform:XRANge? query.)

X Display Origin The X display origin is the X-axis value at the left edge of the display.
For time domain waveforms, it is the time at the start of the display.
This value is treated as a double precision 64-bit floating point number.
(See the :WAVeform:XDISplay? query.)

30-52

Waveform Commands
PREamble

See Also :WAVeform:DATA?

Y Display Range The Y display range is the Y-axis duration of the waveform which is
displayed. For voltage waveforms, it is the amount of voltage across the
display. (See the :WAVeform:YRANge? query.)

Y Display Origin The Y-display origin is the Y-axis value at the center of the display.
For voltage waveforms, it is the voltage at the center of the display.
(See the :WAVeform:YDISplay? query.)

Date The date that the waveform was acquired or created.
Time The time that the waveform was acquired or created.
Frame Model # The model number of the frame that acquired or created this waveform.

The frame model number is ignored when it is sent to an oscilloscope in
the preamble.

Acquisition ModeThe acquisition sampling mode of the waveform. (See
:ACQuire:MODE.)

Complete The complete value is the percent of time buckets that are complete.
The complete value is ignored when it is sent to the oscilloscope in the
preamble. (See the :WAVeform:COMPlete? query.)

X Units The X-axis units of the waveform. (See the :WAVeform:XUNits?
query.)

Y Units The Y-axis units of the waveform. (See the :WAVeform:YUNits?
query.)

Band Pass The band pass consists of two values that are estimates of the maximum
and minimum bandwidth limits of the source waveform. The
bandwidth limit is computed as a function of the selected coupling and
filter mode.
(See the :WAVeform:BANDpass? query.)

Element Description

30-53

Waveform Commands
SEGMented:ALL

SEGMented:ALL

Command :WAVeform:SEGMented:ALL {{ON | 1} | {OFF | 0}}

The :WAVeform:SEGmented:ALL command configures the DATA query for rapidly
downloading all segments in one query.
The <start> and <size> optional parameters for the DATA query are still supported
and represent the start and size of the data for each segment.
Powering on the oscilloscope or performing a Default Setup sets this command to
OFF.
There is complete backwards compatibility when this command is set to OFF.
The ON setting only supports channel and pod sources. If other sources such as
functions are selected, a settings conflict message appears during the DATA query
and no data is downloaded.
In segmented acquisition mode, with this command set to ON, the number of segments
is appended to end of the waveform preamble.

 Example This example turns on this command.
10 OUTPUT 707;":WAVeform:SEGMented:ALL ON"
20 END

Query :WAVeform:SEGMented:A::?

This query returns the status of this command.

30-54

Waveform Commands
SEGMented:COUNt?

SEGMented:COUNt?

Query :WAVeform:SEGMented:COUNt?

The :WAVeform:SEGMented:COUNt? query returns the index number of the last
captured segment. A return value of zero indicates that the :ACQuire:MODE is not
set to SEGMented.

<index_number> An integer number representing the index value of the last segment.

Returned Format [:WAVeform:SEGMented:COUNt] <index_number><NL>

Example This example returns the number of the last segment that was captured in the parameter
Index and prints it to the computer screen.
10 OUTPUT 707;":WAVEFORM:SEGMENTED:COUNT?"
20 ENTER 707;Index
30 PRINT Index
40 END

30-55

Waveform Commands
SEGMented:TTAG?

SEGMented:TTAG?

Query :WAVeform:SEGMented:TTAG?

The :WAVeform:SEGMented:TTAG? query returns the time difference between the
first segment's trigger point and the trigger point of the currently displayed segment.

<delta_time> A real number in exponential format representing the time value difference between
the first segment’s trigger point and the currently displayed segment.

Returned Format [:WAVeform:SEGMented:TTAG] <delta_time><NL>

Example This example returns the time from the first segment’s trigger point and the currently
displayed segment’s trigger point in the parameter dtime and prints it to the computer
screen.
10 OUTPUT 707;":WAVEFORM:SEGMENTED:TTAG?"
20 ENTER 707;dtime
30 PRINT dtime
40 END

30-56

Waveform Commands
SEGMented:XLISt?

SEGMented:XLISt?

Query :WAVeform:SEGMented:XLISt? {RELXorigin | ABSXorigin
| TTAG}

The :WAVeform:SEGMented:XLISt? query rapidly downloads x-parameter values
for all segments.

RELXorigin = relative X origin for each segment.
ABSXorigin = relative origin + time tag for each segment
TTAG = time tag for each segment

This query uses the DATA query format for the returned data and supports all
waveform command options including: BYTeorder, FORmat (only ASCii or BINary
(float64 with 8 bytes per value), SOURce (only CHANnel<N> or POD<N>),
STReaming, VIEW.

30-57

Waveform Commands
SOURce

SOURce

Command :WAVeform:SOURce {CHANnel<N> | COMMonmode<P>
DIFFerential<P> | FUNCtion<N> | HISTogram |
WMEMory<N> | CLOCk | MTRend | MSPectrum | EQUalized
| BUS<N> | POD1 | POD2 | PODALL}

The :WAVeform:SOURce command selects a channel, function, waveform memory,
or histogram as the waveform source.
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.
The EQUalized source is only available if the oscilloscope has the High Speed Serial
option and the Serial Data Equalization option installed and the features are enabled.
This command uses the Feed-Forward Equalized (FFE) signal as the source.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).
POD1 is the activated digital channels in the D0-D7 set whiel POD2 is the activated
digital channels in the D8-D15 set. PODALL is all the activated digital channels.

<N> CHANnel<N> is an integer, 1 - 4.
BUS<N> is an integer, 1-4
FUNCtion<N> and WMEMory<N> are:

Integers, 1 - 4, representing the selected function or waveform memory.

<P> An integer, 1 - 2.

30-58

Waveform Commands
SOURce

Example This example selects channel 1 as the waveform source.
10 OUTPUT 707;":WAVEFORM:SOURCE CHANNEL1"
20 END

Query :WAVeform:SOURce?

The :WAVeform:SOURce? query returns the currently selected waveform source.

Returned Format [:WAVeform:SOURce] {CHANnel<N> | COMMonmode<P> |
DIFFerential<P> | FUNCtion<N> | HISTogram |
 WMEMory<N> | CLOCk | MTRend | MSPectrum | EQUalized}<NL>

Example This example places the current selection for the waveform source in the string
variable, Selection$, then prints the contents of the variable to the computer's screen.
10 DIM Selection$[50]!Dimension variable
20 OUTPUT 707;":WAVEFORM:SOURCE?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

30-59

Waveform Commands
STReaming

STReaming

Command :WAVeform:STReaming {{ON | 1} | {OFF | 0}}

When enabled, :WAVeform:STReaming allows more than 999,999,999 bytes of data
to be transfered from the Infiniium oscilloscope to a PC when using the
:WAVefrom:DATA? query. See the :WAVeform:DATA? query for information on
receiving this much data.

 Example This example turns on the streaming feature.
10 OUTPUT 707;":WAVeform:STReaming: ON"
20 END

Query :WAVeform:STReaming?

The :WAVeform:STReaming? query returns the status of the streaming feature.

Returned Format [:WAVeform:STReaming] {1 | 0}<NL>

30-60

Waveform Commands
TYPE?

TYPE?

Query :WAVeform:TYPE?

The :WAVeform:TYPE? query returns the current acquisition data type for the
currently selected source. The type returned describes how the waveform was
acquired. The waveform type may be RAW, INTerpolate, AVERage, HHIStogram,
PDETect, or VHISTogram.

RAW RAW data consists of one data point in each time bucket with no interpolation.

INTerpolate In the INTerpolate acquisition type, the last data point in each time bucket is stored,
and additional data points between the acquired data points are filled by interpolation.

AVERage AVERage data consists of the average of the first n hits in a time bucket, where n is
the value in the count portion of the preamble. Time buckets that have fewer than n
hits return the average of the data they contain. If the :ACQuire:COMPlete parameter
is set to 100%, then each time bucket must contain the number of data hits specified
with the :ACQuire:AVERage:COUNt command.

HHIStogram The data is a horizontal histogram. Histograms are transferred using the LONGLONG
format. They can be generated using the Histogram subsystem commands.

PDETect PDETect data consists of two data points in each time bucket: the minimum values
and the maximum values.

VHIStogram The data is a vertical histogram. Histograms are transferred using the LONGLONG
format. They can be generated using the Histogram subsystem commands.

Returned Format [:WAVeform:TYPE] {RAW | INTerpolate | AVERage |
HHIStogram | PDETect | VHIStogram}<NL>

Example This example places the current acquisition data type in the string variable, Type$,
then prints the contents of the variable to the computer's screen.
10 DIM Type$[50]!Dimension variable
20 OUTPUT 707;":WAVEFORM:TYPE?"
30 ENTER 707;Type$
40 PRINT Type$
50 END

30-61

Waveform Commands
VIEW

VIEW

Command :WAVeform:VIEW {ALL | MAIN | WINDow}

The :WAVeform:VIEW command selects which view of the waveform is selected for
data and preamble queries. You can set the command to ALL, MAIN, or WINDow.
The view has different meanings depending upon the waveform source selected. The
default setting for this command is ALL.

Channels For channels, you may select ALL, MAIN, or WINDow views. If you select ALL,
all of the data in the waveform record is referenced. If you select MAIN, only the
data in the main time base range is referenced. The first value corresponds to the first
time bucket in the main time base range, and the last value corresponds to the last
time bucket in the main time base range. If WINDow is selected, only data in the
delayed view is referenced. The first value corresponds to the first time bucket in the
delayed view and the last value corresponds to the last time bucket in the delayed view.

Memories For memories, if you specify ALL, all the data in the waveform record is referenced.
WINDow and MAIN refer to the data contained in the memory time base range for
the particular memory. The first value corresponds to the first time bucket in the
memory time base range, and the last value corresponds to the last time bucket in the
memory time base range.

Functions For functions, ALL, MAIN, and WINDow refer to all of the data in the waveform
record.
Table 0-5 summarizes the parameters for this command for each source.

Example This example sets up the oscilloscope to view all of the data.
10 OUTPUT 707;":WAVEFORM:VIEW ALL"
20 END

30-62

Waveform Commands
VIEW

Table 0-5 Waveform View Parameters

Query :WAVeform:VIEW?

The :WAVeform:VIEW? query returns the currently selected view.

Returned Format [:WAVeform:VIEW] {ALL | MAIN | WINDow}<NL>

Example This example returns the current view setting to the string variable, Setting$, then
prints the contents of the variable to the computer's screen.
10 DIM Setting$[50]!Dimension variable
20 OUTPUT 707;":WAVEFORM:VIEW?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

Source/Parameter ALL MAIN WINDow

CHANNEL All data Main time base Zoom

MEMORY All data Memory time base Memory time base

FUNCTION All data All data All data

30-63

Waveform Commands
XDISplay?

XDISplay?

Query :WAVeform:XDISplay?

The :WAVeform:XDISplay? query returns the X-axis value at the left edge of the
display. For time domain waveforms, it is the time at the start of the display. For
VERSus type waveforms, it is the value at the center of the X-axis of the display. This
value is treated as a double precision 64-bit floating point number.

Returned Format [:WAVeform:XDISplay] <value><NL>

<value> A real number representing the X-axis value at the left edge of the display.

Example This example returns the X-axis value at the left edge of the display to the numeric
variable, Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":WAVEFORM:XDISPLAY?"
30 ENTER 707;Value
40 PRINT Value
50 END

A “Waveform data is not valid” error occurs when there is no data available
for a channel. When this occurs, a zero value is returned.

30-64

Waveform Commands
XINCrement?

XINCrement?

Query :WAVeform:XINCrement?

The :WAVeform:XINCrement? query returns the duration between consecutive data
points for the currently specified waveform source. For time domain waveforms, this
is the time difference between consecutive data points. For VERSus type waveforms,
this is the duration between levels on the X axis. For voltage waveforms, this is the
voltage corresponding to one level.

Returned Format [:WAVeform:XINCrement] <value><NL>

<value> A real number representing the duration between data points on the X axis.

Example This example places the current X-increment value for the currently specified source
in the numeric variable, Value, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":WAVEFORM:XINCREMENT?"
30 ENTER 707;Value
40 PRINT Value
50 END

See Also You can obtain the X-increment value through the :WAVeform:PREamble? query.

A “Waveform data is not valid” error occurs when there is no data available
for a channel. When this occurs, a zero value is returned.

30-65

Waveform Commands
XORigin?

XORigin?

Query :WAVeform:XORigin?

The :WAVeform:XORigin? query returns the X-axis value of the first data point in
the data record. For time domain waveforms, it is the time of the first point.
For VERSus type waveforms, it is the X-axis value at level zero. For voltage
waveforms, it is the voltage at level zero. The value returned by this query is treated
as a double precision 64-bit floating point number.

Returned Format [:WAVeform:XORigin] <value><NL>

<value> A real number representing the X-axis value of the first data point in the data record.

Example This example places the current X-origin value for the currently specified source in
the numeric variable, Value, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":WAVEFORM:XORIGIN?"
30 ENTER 707;Value
40 PRINT Value
50 END

See Also You can obtain the X-origin value through the :WAVeform:PREamble? query.

A “Waveform data is not valid” error occurs when there is no data available
for a channel. When this occurs, a zero value is returned.

30-66

Waveform Commands
XRANge?

XRANge?

Query :WAVeform:XRANge?

The :WAVeform:XRANge? query returns the X-axis duration of the displayed
waveform. For time domain waveforms, it is the duration of the time across the
display. For VERSus type waveforms, it is the duration of the waveform that is
displayed on the X axis.

Returned Format [:WAVeform:XRANge] <value><NL>

<value> A real number representing the X-axis duration of the displayed waveform.

Example This example returns the X-axis duration of the displayed waveform to the numeric
variable, Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":WAVEFORM:XRANGE?"
30 ENTER 707;Value
40 PRINT Value
50 END

A “Waveform data is not valid” error occurs when there is no data available
for a channel. When this occurs, a zero value is returned.

30-67

Waveform Commands
XREFerence?

XREFerence?

Query :WAVeform:XREFerence?

The :WAVeform:XREFerence? query returns the data point or level associated with
the X-origin data value. It is at this data point or level that the X origin is defined. In
this oscilloscope, the value is always zero.

Returned Format [:WAVeform:XREFerence] 0<NL>

Example This example places the current X-reference value for the currently specified source
in the numeric variable, Value, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":WAVEFORM:XREFERENCE?"
30 ENTER 707;Value
40 PRINT Value
50 END

See Also You can obtain the X-reference value through the :WAVeform:PREamble? query.

30-68

Waveform Commands
XUNits?

XUNits?

Query :WAVeform:XUNits?

The :WAVeform:XUNits? query returns the X-axis units of the currently selected
waveform source. The currently selected source may be a channel, function, or
waveform memory.

Returned Format [:WAVeform:XUNits] {UNKNown | VOLT | SECond | CONStant | AMP
| DECibels | HERTz | WATT}<NL>

Example This example returns the X-axis units of the currently selected waveform source to
the string variable, Unit$, then prints the contents of the variable to the computer's
screen.
10 DIM Unit$[50]!Dimension variable
20 OUTPUT 707;":WAVEFORM:XUNITS?"
30 ENTER 707;Unit$
40 PRINT Unit$
50 END

30-69

Waveform Commands
YDISplay?

YDISplay?

Query :WAVeform:YDISplay?

The :WAVeform:YDISplay? query returns the Y-axis value at the center of the display.
For voltage waveforms, it is the voltage at the center of the display.

Returned Format [:WAVeform:YDISplay] <value><NL>

<value> A real number representing the Y-axis value at the center of the display.

Example This example returns the current Y-display value to the numeric variable, Value, then
prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;"":WAVEFORM:YDISPLAY?"
30 ENTER 707;Value
40 PRINT Value
50 END

A “Waveform data is not valid” error occurs when there is no data available
for a channel. When this occurs, a zero value is returned.

30-70

Waveform Commands
YINCrement?

YINCrement?

Query :WAVeform:YINCrement?

The :WAVeform:YINCrement? query returns the y-increment voltage value for the
currently specified source. This voltage value is the voltage difference between two
adjacent waveform data digital codes. Adjacent digital codes are codes that differ by
one least significant bit. For example, the digital codes 24680 and 24681 vary by one
least significant bit.

• For BYTE and WORD data, and voltage waveforms, it is the voltage
corresponding to one least significant bit change.

• For ASCii data format, the YINCrement is the full scale voltage range covered
by the A/D converter.

Returned Format [:WAVeform:YINCrement] <real_value><NL>

<real_value> A real number in exponential format.

Example This example places the current Y-increment value for the currently specified source
in the numeric variable, Value, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":WAVEFORM:YINCREMENT?"
30 ENTER 707;Value
40 PRINT Value
50 END

See Also For more information on BYTE and WORD formats see “Understanding WORD and
BYTE Formats” on page 30-39.
You can also obtain the Y-increment value through the :WAVeform:PREamble? query.

A “Waveform data is not valid” error occurs when there is no data available
for a channel. When this occurs, a zero value is returned.

30-71

Waveform Commands
YORigin?

YORigin?

Query :WAVeform:YORigin?

The :WAVeform:YORigin? query returns the y-origin voltage value for the currently
specified source. The voltage value returned is the voltage value represented by the
waveform data digital code 00000.

• For BYTE and WORD data, and voltage waveforms, it is the voltage at digital
code zero.

• For ASCii data format, the YORigin is the Y-axis value at the center of the data
range. Data range is returned in the Y increment.

Returned Format [:WAVeform:YORigin] <real_value><NL>

<real_value> A real number in exponential format.

Example This example places the current Y-origin value in the numeric variable, Center, then
prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":WAVEFORM:YORIGIN?"
30 ENTER 707;Center
40 PRINT Center
50 END

See Also For more information on BYTE and WORD formats see “Understanding WORD and
BYTE Formats” on page 30-39.
You can obtain the Y-origin value through the :WAVeform:PREamble? query.

A “Waveform data is not valid” error occurs when there is no data available
for a channel. When this occurs, a zero value is returned.

30-72

Waveform Commands
YRANge?

YRANge?

Query :WAVeform:YRANge?

The :WAVeform:YRANge? query returns the Y-axis duration of the displayed
waveform. For voltage waveforms, it is the voltage across the entire display.

Returned Format [:WAVeform:YRANge] <value><NL>

<value> A real number representing the Y-axis duration of the displayed waveform.

Example This example returns the current Y-range value to the numeric variable, Value, then
prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":WAVEFORM:YRANGE?"
30 ENTER 707;Value
40 PRINT Value
50 END

A “Waveform data is not valid” error occurs when there is no data available
for a channel. When this occurs, a zero value is returned.

30-73

Waveform Commands
YREFerence?

YREFerence?

Query :WAVeform:YREFerence?

The :WAVeform:YREFerence? query returns the y-reference voltage value for the
currently specified source. It is at this level that the Y origin is defined. In this
oscilloscope, the value is always zero.

Returned Format [:WAVeform:YREFerence] 0<NL>>

Example This example places the current Y-reference value for the currently specified source
in the numeric variable, Value, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":WAVEFORM:YREFERENCE?"
30 ENTER 707;Value
40 PRINT Value
50 END

See Also For more information on BYTE and WORD formats see “Understanding WORD and
BYTE Formats” on page 30-39.
You can obtain the Y-reference value through the :WAVeform:PREamble? query.

30-74

Waveform Commands
YUNits?

YUNits?

Query :WAVeform:YUNits?

The :WAVeform:YUNits? query returns the Y-axis units of the currently selected
waveform source. The currently selected source may be a channel, function, or
waveform memory.

Returned Format [:WAVeform:YUNits] {UNKNown | VOLT | SECond | HITS | DECibels
| CONStant | AMP}<NL>

Example This example returns the Y-axis units of the currently selected waveform source to
the string variable, Unit$, then prints the contents of the variable to the computer's
screen.
10 DIM Unit$[50]!Dimension variable
20 OUTPUT 707;":WAVEFORM:YUNITS?"
30 ENTER 707;Unit$
40 PRINT Unit$
50 END

31

Waveform Memory Commands

31-2

Waveform Memory Commands

The Waveform Memory Subsystem commands let you save and display
waveforms, memories, and functions. These Waveform Memory commands
and queries are implemented in the Infiniium Oscilloscopes:

• CLEar
• DISPlay
• LOAD
• SAVE
• XOFFset
• XRANge
• YOFFset
• YRANge

<N> in WMEMory<N> Indicates the Waveform Memory Number

In Waveform Memory commands, the <N> in WMEMory<N> represents the
waveform memory number (1-4).

31-3

Waveform Memory Commands
CLEar

CLEar

Command :WMEMory<N>:CLEar

The :WMEMory<N>:CLEar clears the associated wave memory.

<N> The memory number is an integer from 1 to 4.

Example This example clears the waveform memory 1.
10 OUTPUT 707;":WMEMORY1:CLEar"
20 END

31-4

Waveform Memory Commands
DISPlay

DISPlay

Command :WMEMory<N>:DISPlay {{ON | 1} | {OFF | 0}}

The :WMEMory<N>:DISPlay command enables or disables the viewing of the
selected waveform memory.

<N> The memory number is an integer from 1 to 4.

Example This example turns on the waveform memory 1 display.
10 OUTPUT 707;":WMEMORY1:DISPLAY ON"
20 END

Query :WMEMory<N>:DISPlay?

The :WMEMory<N>:DISPlay? query returns the state of the selected waveform
memory.

Returned Format [:WMEMory<N>:DISPlay] {1 | 0}<NL>

31-5

Waveform Memory Commands
LOAD

LOAD

Command :WMEMory<N>:LOAD <file_name>

The :WMEMory<N>:LOAD command loads an oscilloscope waveform memory
location with a waveform from a file that has an internal waveform format (extension
.wfm), comma separated xypairs, (extension .csv), tab separated xypairs (extension
.tsv), and yvalues text (extension .txt). You can load the file from either the c: or a:
drive, or any lan connected drive. See the examples below.
The oscilloscope assumes that the default path for waveforms is c:\Document and
Settings\All Users\Shared Documents\Infiniium\Data. To use a different path, specify
the path and file name completely.

<N> The memory number is an integer from 1 to 4.

<file_name> A quoted string which specifies the file to load, and has a .wfm, .csv, .tsv, or .txt
extension.

Examples This example loads waveform memory 4 with a file.
10 OUTPUT 707;":WMEMORY4:LOAD ""c:\Document and Settings\All
Users\Shared Documents\Infiniium\Data\waveform.wfm"""
20 END

This example loads waveform memory 3 with a file that has the internal waveform
format and is stored on the floppy drive.
10 OUTPUT 707;":WMEMORY3:LOAD ""a:\waveform.wfm"""
20 END

Related Commands :DISK:LOAD
:DISK:STORe

31-6

Waveform Memory Commands
SAVE

SAVE

Command :WMEMory<N>:SAVE {CHANnel<N> | COMMonmode<P> |
DIFFerential<P> | CLOCk | FUNCtion<N> | MTRend |
MSPectrum | WMEMory<N>}

The :WMEMory<N>:SAVE command stores the specified channel, waveform
memory, or function to the waveform memory. You can save waveforms to waveform
memories regardless of whether the waveform memory is displayed or not.
The :WAVeform:VIEW command determines the view of the data being saved.

<N> CHANnel<N> is an integer, 1 - 4.
FUNCtion<N> and WMEMory<N> are:

Integers, 1 - 4, representing the selected function or waveform memory.
MTRend and MSPectrum sources are only available if the oscilloscope has the EZJIT
option installed and the feature is enabled.
The CLOCk source is only available if the oscilloscope has the High Speed Serial
option installed and the feature is enabled.

<P> An integer, 1 - 2.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).

Example This example saves channel 1 to waveform memory 4.
10 OUTPUT 707;":WMEMORY4:SAVE CHANNEL1"
20 END

31-7

Waveform Memory Commands
XOFFset

XOFFset

Command :WMEMory<N>:XOFFset <offset_value>

The :WMEMory<N>:XOFFset command sets the x-axis, horizontal position for the
selected waveform memory's display scale. The position is referenced to center
screen.

<N> The memory number is an integer from 1 to 4.

<offset_value> A real number for the horizontal offset (position) value.

Example This example sets the X-axis, horizontal position for waveform memory 3 to 0.1
seconds (100 ms).
10 OUTPUT 707;":WMEMORY3:XOFFSET 0.1"
20 END

Query :WMEMory<N>:XOFFset?

The :WMEMory<N>:XOFFset? query returns the current X-axis, horizontal position
for the selected waveform memory.

Returned Format [:WMEMory<N>:XOFFset] <offset_value><NL>

31-8

Waveform Memory Commands
XRANge

XRANge

Command :WMEMory<N>:XRANge <range_value>

The :WMEMory<N>:XRANge command sets the X-axis, horizontal range for the
selected waveform memory's display scale. The horizontal scale is the horizontal
range divided by 10.

<N> The memory number is an integer from 1 to 4.

<range_value> A real number for the horizontal range value.

Example This example sets the X-axis, horizontal range of waveform memory 2 to
435 microseconds.
10 OUTPUT 707;":WMEMORY2:XRANGE 435E-6"
20 END

Query :WMEMory<N>:XRANge?

The :WMEMory<N>:XRANge? query returns the current X-axis, horizontal range
for the selected waveform memory.

Returned Format [:WMEMory<N>:XRANge] <range_value><NL>

31-9

Waveform Memory Commands
YOFFset

YOFFset

Command :WMEMory<N>:YOFFset <offset_value>

The :WMEMory<N>:YOFFset command sets the Y-axis (vertical axis) offset for the
selected waveform memory.

<N> The memory number is an integer from 1 to 4.

<offset_value> A real number for the vertical offset value.

Example This example sets the Y-axis (vertical) offset of waveform memory 2 to 0.2V.
10 OUTPUT 707;":WMEMORY2:YOFFSET 0.2"
20 END

Query :WMEMory<N>:YOFFset?

The :WMEMory<N>:YOFFset? query returns the current Y-axis (vertical) offset for
the selected waveform memory.

Returned Format [:WMEMory<N>:YOFFset] <offset_value><NL>

31-10

YRANge

Command :WMEMory<N>:YRANge <range_value>

The :WMEMory<N>:YRANge command sets the Y-axis, vertical range for the
selected memory. The vertical scale is the vertical range divided by 8.

<N> The memory number is an integer from 1 to 4.

<range_value> A real number for the vertical range value.

Example This example sets the Y-axis (vertical) range of waveform memory 3 to 0.2 volts.
10 OUTPUT 707;":WMEMORY3:YRANGE 0.2"
20 END

Query :WMEMory<N>:YRANge?

The :WMEMory<N>:YRANge? query returns the Y-axis, vertical range for the
selected memory.

Returned Format [:WMEMory<N>:YRANge]<range_value><NL>

31-11

Waveform Memory Commands
YRANge

31-12

Waveform Memory Commands
YRANge

32

Serial Data Equalization Commands

32-2

Serial Data Equalization Commands

The N5461A Serial Data Equalization application is used to re-open partially
or completely closed real-time eye diagrams. For additional information on
equalization, consult the N5461A Infiniium Serial Data Equalization User’s
Guide. These SPRocessing commands and queries are implemented in the
Infiniium Oscilloscopes (you must have the N5461A Infiniium Serial Data
Equalization application installed to access these commands):

• SPRocessing:CTLequalizer:DISPlay
• SPRocessing:CTLequalizer:SOURce
• SPRocessing:CTLequalizer:DCGain
• SPRocessing:CTLequalizer:P1
• SPRocessing:CTLequalizer:P2
• SPRocessing:CTLEQualizer:RATe
• SPRocessing:CTLequalizer:VERTical
• SPRocessing:CTLequalizer:VERTical:OFFSet
• SPRocessing:CTLequalizer:VERTical:RANGe
• SPRocessing:CTLequalizer:ZERo
• SPRocessing:FFEQualizer:BANDwidth
• SPRocessing:FFEQualizer:BWMode
• SPRocessing:FFEQualizer:DISPlay
• SPRocessing:FFEQualizer:SOURce
• SPRocessing:FFEQualizer:NTAPs
• SPRocessing:FFEQualizer:NPRecursor
• SPRocessing:FFEQualizer:RATe
• SPRocessing:FFEQualizer:TAP
• SPRocessing:FFEQualizer:TAP:PLENgth
• SPRocessing:FFEQualizer:TAP:WIDTh
• SPRocessing:FFEQualizer:TAP:DELay
• SPRocessing:FFEQualizer:TAP:AUTomatic
• SPRocessing:FFEQualizer:TDELay
• SPRocessing:FFEQualizer:TDMode
• SPRocessing:FFEQualizer:VERTical

32-3

• SPRocessing:FFEQualizer:VERTical:OFFSet
• SPRocessing:FFEQualizer:VERTical:RANGe
• SPRocessing:DFEQualizer:STATe
• SPRocessing:DFEQualizer:SOURce
• SPRocessing:DFEQualizer:NTAPs
• SPRocessing:DFEQualizer:TAP
• SPRocessing:DFEQualizer:TAP:WIDTh
• SPRocessing:DFEQualizer:TAP:DELay
• SPRocessing:DFEQualizer:TAP:MAX
• SPRocessing:DFEQualizer:TAP:MIN
• SPRocessing:DFEQualizer:TAP:GAIN
• SPRocessing:DFEQualizer:TAP:UTARget
• SPRocessing:DFEQualizer::TAP:LTARget
• SPRocessing:DFEQualizer:TAP:AUTomatic

32-4

CTLequalizer:DISPlay

Command :SPRocessing:CTLequalizer:DISPlay {(OFF | 0) | (ON
| 1)}

The :CTLequalizer:DISPlay command turns the display of a Continuous Time Linear
Equalizer (CTLE) real-time eye diagram on or off. Turning CTLE on automatically
turns FFE off (and vice versa).

Example This example turns on the display of a CTLE real-time eye diagram.
10 OUTPUT 707;":SPRocessing:CTLequalizer:DISPlay ON"
20 END

Query :SPRocessing:CTLequalizer:DISPlay?

The :SPRocessing:CTLequalizer:DISPlay? query returns whether or not the CTLE
real-time eye is displayed.

32-5

Serial Data Equalization Commands
CTLequalizer:SOURce

CTLequalizer:SOURce

Command :SPRocessing:CTLequalizer:SOURce {CHANnel<N> |
FUNCtion<N> | WMEMory<N>}

The :CTLequalizer:SOURce command sets the source for the Continuous Time
Linear Equalization.

<N> CHANnel<N> is an integer, 1- 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1- 4, representing the selected function or waveform memory

Example This example sets the CTLE source to Channel 1.
10 OUTPUT 707;":SPRocessing:CTLequalizer:SOURce Channel1"
20 END

Query :SPRocessing:CTLequalizer:SOURce?

The :SPRocessing:CTLequalizer:SOURce? query returns the CTLE source.

32-6

Serial Data Equalization Commands
CTLequalizer:DCGain

CTLequalizer:DCGain

Command :SPRocessing:CTLequalizer:DCGain <dc_gain>

The :CTLequalizer:DCGain command sets the DC Gain parameter for the
Continuous Time Linear Equalization.

<dc_gain> A real number

Example This example sets the CTLE DC Gain parameter to 1.
10 OUTPUT 707;":SPRocessing:CTLequalizer:DCGain 1"
20 END

Query :SPRocessing:CTLequalizer:DCGain?

The :SPRocessing:CTLequalizer:DCGain? query returns the CTLE’s DC Gain
parameter.

32-7

Serial Data Equalization Commands
CTLequalizer:P1

CTLequalizer:P1

Command :SPRocessing:CTLequalizer:P1 <pole1_freq>

The :CTLequalizer:P1 command sets the Pole 1 frequency for the Continuous
Time Linear Equalization.

<pole1_freq> A real number

Example This example sets the CTLE Pole 1 frequency to 1GHz.
10 OUTPUT 707;":SPRocessing:CTLequalizer:P1 1e9"
20 END

Query :SPRocessing:CTLequalizer:P1?

The :SPRocessing:CTLequalizer:P1? query returns the CTLE’s Pole 1
frequency.

32-8

Serial Data Equalization Commands
CTLequalizer:P2

CTLequalizer:P2

Command :SPRocessing:CTLequalizer:P2 <pole2_freq>

The :CTLequalizer:P1 command sets the Pole 2 frequency for the Continuous
Time Linear Equalization.

<pole2_freq> A real number

Example This example sets the CTLE Pole 2 frequency to 4 GHz.
10 OUTPUT 707;":SPRocessing:CTLequalizer:P2 4e9"
20 END

Query :SPRocessing:CTLequalizer:P2?

The :SPRocessing:CTLequalizer:P2? query returns the CTLE’s Pole 2
frequency.

32-9

Serial Data Equalization Commands
CTLequalizer:RATe

CTLequalizer:RATe

Command :SPRocessing:CTLequalizer:RATe <data_rate>

The :CTLequalizer:RATe command sets the data rate for the CTLE equalizer.

<data_rate> A real number

Example This example sets the CTLE data rate to 3e9.
10 OUTPUT 707;":SPRocessing:CTLequalizer:RATe 3e9"
20 END

Query :SPRocessing:CTLequalizer:RATe?

The :SPRocessing:CTLequalizer:Rate? query returns the CTLE’s data rate.

32-10

Serial Data Equalization Commands
CTLequalizer:VERTical

CTLequalizer:VERTical

Command :SPRocessing:CTLequalizer:VERTical {AUTO | MANual}

The :SPRocessing:CTLequalizer:VERTIcal command sets the CTLE signal’s vertical
scale mode to automatic or manual. In automatic mode, the oscilloscope automatically
selects the vertical scaling and offset. In manual mode, you can set your own scaling
and offset values.

Example This example sets the CTLE signal’s vertical scale mode to automatic.
10 OUTPUT 707;":SPRocessing:CTLequalizer:VERTical AUTO"
20 END

Query :SPRocessing:CTLequalizer:VERTical?

The :SPRocessing:CTLequalizer:VERTical? query returns the current CTLE signal’s
vertical scale mode setting.

Returned format [:SPRocessing:CTLequalizer:VERTical] {AUTO | MANual}

Example This example places the current setting of the CTLE signal’s vertical scale mode in
the string variable Setting$, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":SPRocessing:CTLequalizer:VERTICAL?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

32-11

Serial Data Equalization Commands
CTLequalizer:VERTical:OFFSet

CTLequalizer:VERTical:OFFSet

Command ::SPRocessing:CTLequalizer:VERTical:OFFSet <offset>

The ::SPRocessing:CTLequalizer:VERTial:OFFSet command sets the CTLE signal’s
vertical offset.

<offset> A real number for the CTLE signal’s vertical offset.

Example This example sets the CTLE signal’s vertical offset to 1 volt.
10 OUTPUT 707;":SPRocessing:CTLequalizer:VERTICAL:OFFSET 1"
20 END

Query :SPRocessing:CTLequalizer:VERTical:OFFSet?

The:SPRocessing:CTLequalizer:VERTIcal:OFFSet? query returns the CTLE
signal’s vertical offset setting.

Returned format [:SPRocessing:CTLequalizer:VERTical:OFFSet] <value><NL>

<value> The CTLE signal’s vertical offset setting.

Example This example places the current value of the CTLE signal’s vertical offset in the
numeric variable, Value, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":SPRocessing:CTLequalizer:VERTICAL:OFFSET?"
30 ENTER 707;Value
40 PRINT Value
50 END

32-12

Serial Data Equalization Commands
CTLequalizer:VERTical:RANGe

CTLequalizer:VERTical:RANGe

Command :SPRocessing:CTLequalizer:VERTical:RANGe <range>

The :SPRocessing:CTLequalizer:VERTial:RANGe command sets the CTLE signal’s
vertical range.

<range> A real number for the full-scale CTLE signal’s vertical range.

Example This example sets the CTLE signal’s vertical range to 16 volts (2 volts times 8
divisions.)
10 OUTPUT 707;":SPRocessing:CTLequalizer:VERTICAL:RANGE 16"
20 END

Query :SPRocessing:CTLequalizer:VERTical:RANGe?

The :SPRocessing:CTLequalizer:VERTical:RANGe? query returns the CTLE
signal’s vertical range setting.

Returned Format [:SPRocessing:CTLequalizer:VERTical:RANGe] <value><NL>

<value> The CTLE signal’s vertical range setting.

Example This example places the current value of the CTLE signal’s vertical range in the
numeric variable, Value, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":SPRocessing:CTLequalizer:VERTICAL:RANGE?"
30 ENTER 707;Value
40 PRINT Value
50 END

32-13

Serial Data Equalization Commands
CTLequalizer:ZERo

CTLequalizer:ZERo

Command :SPRocessing:CTLequalizer:ZERo <zero_freq>

The :CTLequalizer:ZERo command sets the zero frequency for the Continuous
Time Linear Equalization.

<zero_freq> A real number

Example This example sets the CTLE zero frequency to 900 MHz.
10 OUTPUT 707;":SPRocessing:CTLequalizer:ZERo 9e6"
20 END

Query :SPRocessing:CTLequalizer:ZERo?

The :SPRocessing:CTLequalizer:ZERo? query returns the CTLE’s zero
frequency.

32-14

Serial Data Equalization Commands
SPRocessing:FFEQualizer:DISPlay

SPRocessing:FFEQualizer:DISPlay

Command :SPRocessing:FFEQualizer:DISPlay {(OFF | 0) | (ON |
1)}

The :FFEQualizer:DISPlay command turns the display of a Feed-Forward Equalized
(FFE) real-time eye diagram on or off.

Example This example turns on the display of a FFE real-time eye diagram.
10 OUTPUT 707;":SPRocessing:FFEQualizer:DISPlay ON"
20 END

Query :SPRocessing:FFEQualizer:DISPlay?

The :SPRocessing:FFEQualizer:DISPlay? query returns whether or not the FFE real-
time eye is displayed.

32-15

Serial Data Equalization Commands
SPRocessing:FFEQualizer:SOURce

SPRocessing:FFEQualizer:SOURce

Command :SPRocessing:FFEQualizer:SOURce {CHANnel<N> |
COMMonmode<P> | DIFFerential<P> | FUNCtion<N> |
WMEMory<N>}

The :FFEQualizer:SOURce command sets the source for the Feed-Forward
Equalization.

The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).

<N> CHANnel<N> is an integer, 1- 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1- 4, representing the selected function or waveform memory

<P> An integer, 1- 2.

Example This example sets the FFE source to Channel 1.
10 OUTPUT 707;":SPRocessing:FFEQualizer:SOURce Channel1"
20 END

Query :SPRocessing:FFEQualizer:SOURce?

The :SPRocessing:FFEQualizer:SOURce? query returns the FFE source.

32-16

Serial Data Equalization Commands
FFEQualizer:NPRecursor

FFEQualizer:NPRecursor

Command :SPRocessing:FFEQualizer:NPRecursor <number>

The :FFEQualizer:NPRecursor command sets the number of precursor taps to be used
in the FFE algorithm.

<number> An integer between 1 and (NTAPs - 1)

Example This example sets the number of FFE precursor taps to 3.
10 OUTPUT 707;":SPRocessing:FFEQualizer:NPRecursor 3"
20 END

Query :SPRocessing:FFEQualizer:NPRecursor?

The :SPRocessing:FFEQualizer:NPRecursor? query returns the number of FFE
precursor taps.

32-17

Serial Data Equalization Commands
SPRocessing:FFEQualizer:NTAPs

SPRocessing:FFEQualizer:NTAPs

Command :SPRocessing:FFEQualizer:NTAPs <number>

The :FFEQualizer:NTAPs command sets the number of taps to be used in the FFE
algorithm.
The indices of your FFE taps depend on the number of precursor taps being used. For
example, if you are using zero precursor taps then your FFE tap indices would range
from 0 to (NTAPs - 1). If you are using two precursor taps then your FFE tap indices
would range from -2 to (NTAPs - 1 - 2).

<number> an integer between 2 and 40

Example This example sets the number of FFE taps to 3.
10 OUTPUT 707;":SPRocessing:FFEQualizer:NTAPs 3"
20 END

Query :SPRocessing:FFEQualizer:NTAPs?

The :SPRocessing:FFEQualizer:NTAPs? query returns the number of FFE taps.

32-18

Serial Data Equalization Commands
FFEequalizer:RATe

FFEequalizer:RATe

Command :SPRocessing:FFEequalizer:RATe <data_rate>

The :FFEequalizer:RATe command sets the data rate for the FFE equalizer.

<data_rate> A real number

Example This example sets the FFE data rate to 3e9.
10 OUTPUT 707;":SPRocessing:FFEequalizer:RATe 3e9"
20 END

Query :SPRocessing:FFEequalizer:RATe?

The :SPRocessing:FFEequalizer:Rate? query returns the FFE’s data rate.

32-19

Serial Data Equalization Commands
SPRocessing:FFEQualizer:TAP

SPRocessing:FFEQualizer:TAP

Command :SPRocessing:FFEQualizer:TAP <tap>, <value>

The :FFEQualizer:TAP command sets the tap value for each FFE tap. For example,
when <tap> is equal to 0 then the 0th tap is set to <value>.
The indices of your FFE taps depend on the number of precursor taps being used. For
example, if you are using zero precursor taps then your FFE tap indices would range
from 0 to (NTAPs - 1). If you are using two precursor taps then your FFE tap indices
would range from -2 to (NTAPs - 1 - 2).

<tap> The tap number; when <tap> == 0, Tap 0 is set

<value> The tap value

Example This example sets the second FFE tap to -1.432.
10 OUTPUT 707;":SPRocessing:FFEQualizer:TAP 2,-1.432"
20 END

Query :SPRocessing:FFEQualizer:TAP?

The :SPRocessing:FFEQualizer:TAP? query returns the FFE tap values.

32-20

Serial Data Equalization Commands
SPRocessing:FFEQualizer:TAP:PLENgth

SPRocessing:FFEQualizer:TAP:PLENgth

Command :SPRocessing:FFEQualizer:TAP:PLENgth {CUSTom |
PRBS51 | PRBS61 | PRBS71 | PRBS81 | PRBS91 | PRBS101},
<file>

In order for the tap optimization to work, the algorithm must know the input pattern.
You can train the oscilloscope to a known pattern and then use the optimized taps on
your live traffic. The :FFEQualizer:TAP:PLENgth command sets the pattern for the
FFE tap optimization algorithm.
The file parameter is only used in CUSTom mode.
For more information on this parameter, refer to the N5461A Infiniium Seriald Data
Equalization User’s Guide.

<CUSTom> Allows you to import a known pattern via a .prtn file (save at location <file>)

<PRBSX1> Pseudo-random Binary Sequence of length 2^X - 1.

Example This example sets the pattern to PRBS 2^8 - 1.
10 OUTPUT 707;":SPRocessing:FFEQualizer:TAP:PLENgth PRBS81"
20 END

Query :SPRocessing:FFEQualizer:TAP:PLENgth?

The :SPRocessing:FFEQualizer:TAP:PLENgth? query returns the pattern used in
optimizing the FFE tap values.

32-21

Serial Data Equalization Commands
SPRocessing:FFEQualizer:TAP:WIDTh

SPRocessing:FFEQualizer:TAP:WIDTh

Command :SPRocessing:FFEQualizer:TAP:WIDTh <width>

The :FFEQualizer:TAP:WIDTh command sets the Eye Width field for the FFE tap
optimization. Setting the width to 0.0 means the optimization is only preformed at the
location of the clock. Setting the width to 1.0 means the entire acquisition is used in
the optimization. The default value for FFE is 0.33. For more information on this
parameter, refer to the N5461A Infiniium Serial Data Equalization User’s Guide.

<width> A real number between 0.0 and 1.0.

Example This example sets the eye width to 0.0.
10 OUTPUT 707;":SPRocessing:FFEQualizer:TAP:WIDTh 0.0"
20 END

Query :SPRocessing:FFEQualizer:TAP:WIDTh?

The :SPRocessing:FFEQualizer:TAP:WIDTh? query returns the eye width used in
the FFE tap optimization.

32-22

Serial Data Equalization Commands
SPRocessing:FFEQualizer:TAP:DELay

SPRocessing:FFEQualizer:TAP:DELay

Command :SPRocessing:FFEQualizer:TAP:DELay <delay>

The :FFEQualizer:TAP:DELay command specifies the amount of drift the equalized
eye diagram has relative to the unequalized one. This drift is then accounted for so
the two eyes overlap. For more information on this parameter, refer to the N5461A
Infiniium Serial Data Equalization User’s Guide.

<delay> A real number

Query :SPRocessing:FFEQualizer:TAP:DELay?

The :SPRocessing:FFEQualizer:TAP:DELay? query returns the value for the FFE
Delay field.

32-23

Serial Data Equalization Commands
SPRocessing:FFEQualizer:TAP:AUTomatic

SPRocessing:FFEQualizer:TAP:AUTomatic

Command :SPRocessing:FFEQualizer:TAP:AUTomatic

The :FFEQualizer:TAP:AUTomatic command starts the FFE tap optimization. Be
sure to first specify the number of taps and specify the Pattern and Eye Width
parameters.

Example This example starts the FFE tap optimization.
10 OUTPUT 707;":SPRocessing:FFEQualizer:TAP:AUTomatic"
20 END

Query There is no query for this command.

32-24

Serial Data Equalization Commands
SPRocessing:FFEQualizer:TAP :BANDwidth

SPRocessing:FFEQualizer:TAP :BANDwidth

Command :SPRocessing:FFEQualizer:TAP:BANDwidth <bandwidth>

The :FFEQualizer:TAP:BANDwidth command is only needed if the
FFEQualizer:TAP:BWMode command is set to CUSTom and in this case it sets the
bandwidth at which the response generated by equalization rolls off. To understand
more about this parameter, consult the N5461A Infiniium Serial Data Equalization
User’s Guide.

<bandwidth> The bandwidth at which the response generated by equalization rolls off.

Query :SPRocessing:FFEQualizer:TAP:BANDwidth?

The :SPRocessing:FFEQualizer:TAP:BANDwidth? query returns the current value
for the BANDwidth parameter.

32-25

Serial Data Equalization Commands
SPRocessing:FFEQualizer:TAP :BWMode

SPRocessing:FFEQualizer:TAP :BWMode

Command :SPRocessing:FFEQualizer:TAP:BWMode {TSBandwidth |
TTDelay | CUSTom}

The :FFEQualizer:TAP:BWMode command sets the bandwidth at which the response
generated by equalization is rolled off. To understand more about this parameter,
consult the N5461A Infiniium Serial Data Equalization User’s Guide.

Example This example sets the FFE Bandwidth Mode to TTDELay.
10 OUTPUT 707;":SPRocessing:FFEQualizer:TAP:BWMode TTDelay"
20 END

Query :SPRocessing:FFEQualizer:TAP:BWMode?

The :SPRocessing:FFEQualizer:TAP:BWMode? query returns the FFE Bandwidth
Mode.

32-26

Serial Data Equalization Commands
SPRocessing:FFEQualizer:TAP :TDELay

SPRocessing:FFEQualizer:TAP :TDELay

Command :SPRocessing:FFEQualizer:TAP:TDELay <delay_value>

The :FFEQualizer:TAP:TDELay command is only needed if the
FFEQualizer:TAP:TDMode is set to CUSTom. To determine what this value should
be, use the equation: tap delay = 1/[(data rate)x(# of taps per bit)]. To understand more
about this parameter, consult the N5461A Infiniium Serial Data Equalization User’s
Guide.

<delay_value> A real number

Query :SPRocessing:FFEQualizer:TAP:TDELay?

The :SPRocessing:FFEQualizer:TAP:TDELay? query returns the current value for
the tap delay.

32-27

Serial Data Equalization Commands
SPRocessing:FFEQualizer:TAP :TDMode

SPRocessing:FFEQualizer:TAP :TDMode

Command :SPRocessing:FFEQualizer:TAP:TDMode {TBITrate |
CUSTom}

The :FFEQualizer:TAP:TDMode command sets Tap Delay field to either Track Data
Rate or Custom. If you are using one tap per bit, use the TBITrate selection. If you
are using multiple taps per bit, use CUSTom and then use the
FFEQualizer:TAP:TDELay command to set the value. To understand more about this
parameter, consult the N5461A Infiniium Serial Data Equalization User’s Guide.

Example This example sets the FFE Tap Delay mode to TBITrate.
10 OUTPUT 707;":SPRocessing:FFEQualizer:TAP:TDMode TBITrate"
20 END

Query :SPRocessing:FFEQualizer:TAP:TDMode?

The :SPRocessing:FFEQualizer:TAP:TDMode? query returns the current Tap Delay
mode.

32-28

Serial Data Equalization Commands
FFEQualizer:VERTical

FFEQualizer:VERTical

Command :SPRocessing:FFEQualizer:VERTical {AUTO | MANual}

The :SPRocessing:FFEQualizer:VERTIcal command sets the FFE signal’s vertical
scale mode to automatic or manual. In automatic mode, the oscilloscope automatically
selects the vertical scaling and offset. In manual mode, you can set your own scaling
and offset values.

Example This example sets the FFEE signal’s vertical scale mode to automatic.
10 OUTPUT 707;":SPRocessing:FFEQualizer:VERTical AUTO"
20 END

Query :SPRocessing:FFEQualizer:VERTical?

The :SPRocessing:FFEQualizer:VERTical? query returns the current FFE signal’s
vertical scale mode setting.

Returned format [:SPRocessing:FFEQualizer:VERTical] {AUTO | MANual}

Example This example places the current setting of the FFE signal’s vertical scale mode in the
string variable Setting$, then prints the contents of the variable to the computer's
screen.
10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":SPRocessing:FFEQualizer:VERTICAL?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

32-29

Serial Data Equalization Commands
FFEQualizer:VERTical:OFFSet

FFEQualizer:VERTical:OFFSet

Command ::SPRocessing:FFEQualizer:VERTical:OFFSet <offset>

The ::SPRocessing:FFEQualizer:VERTial:OFFSet command sets the FFE signal’s
vertical offset.

<offset> A real number for the FFE signal’s vertical offset.

Example This example sets the FFE signal’s vertical offset to 1 volt.
10 OUTPUT 707;":SPRocessing:FFEQualizer:VERTICAL:OFFSET 1"
20 END

Query :SPRocessing:FFEQualizer:VERTical:OFFSet?

The:SPRocessing:FFEQualizer:VERTIcal:OFFSet? query returns theFFE signal’s
vertical offset setting.

Returned format [:SPRocessing:FFEQualizer:VERTical:OFFSet] <value><NL>

<value> The FFE signal’s vertical offset setting.

Example This example places the current value of the FFE signal’s vertical offset in the numeric
variable, Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":SPRocessing:FFEQualizer:VERTICAL:OFFSET?"
30 ENTER 707;Value
40 PRINT Value
50 END

32-30

Serial Data Equalization Commands
FFEQualizer:VERTical:RANGe

FFEQualizer:VERTical:RANGe

Command :SPRocessing:FFEQualizer:VERTical:RANGe <range>

The :SPRocessing:FFEQualizer:VERTial:RANGe command sets the FFE signal’s
vertical range.

<range> A real number for the full-scale FFE signal’s vertical range.

Example This example sets the FFE signal’s vertical range to 16 volts (2 volts times 8
divisions.)
10 OUTPUT 707;":SPRocessing:FFEQualizer:VERTICAL:RANGE 16"
20 END

Query :SPRocessing:FFEQualizer:VERTical:RANGe?

The :SPRocessing:FFEQualizer:VERTical:RANGe? query returns the FFE signal’s
vertical range setting.

Returned Format [:SPRocessing:FFEQualizer:VERTical:RANGe] <value><NL>

<value> The FFE signal’s vertical range setting.

Example This example places the current value of the FFE signal’s vertical range in the numeric
variable, Value, then prints the contents of the variable to the computer's screen.
10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":SPRocessing:FFEQualizer:VERTICAL:RANGE?"
30 ENTER 707;Value
40 PRINT Value
50 END

32-31

Serial Data Equalization Commands
SPRocessing:DFEQualizer:STATe

SPRocessing:DFEQualizer:STATe

Command :SPRocessing:DFEQualizer:STATe {(OFF | 0) | (ON | 1)}

The :DFEQualizer:STATe command turns the Decision Feedback Equalizion on or
off.

Example This example turns on DFE.
10 OUTPUT 707;":SPRocessing:DFEQualizer:STATe ON"
20 END

Query :SPRocessing:DFEQualizer:STATe?

The :SPRocessing:DFEQualizer:STATe? query returns whether or not DFE is turned
on.

32-32

Serial Data Equalization Commands
SPRocessing:DFEQualizer:SOURce

SPRocessing:DFEQualizer:SOURce

Command :SPRocessing:FFEQualizer:SOURce {CHANnel<N> |
COMMonmode<P> | DIFFerential<P> | FUNCtion<N> |
WMEMory<N> | EQUalized}

The :DFEQualizer:SOURce command sets the source for the Decision Feedback
Equalization.
Setting the source to EQUalized means the Feed-Forward Equalized (FFE) waveform
is used as the DFE source.
The COMMonmode and DIFFerential sources are just aliases that can be used in place
of the channel names to apply to differential or common mode signals. These are just
aliases - no state change occurs if you refer to a differential channel and you are not
in differential mode. DIFFerential1 refers to the differential signal between channels
1 and 3 (and COMMonmode1 refers to the common mode channel between these
same channels). DIFFerential2 refers to the differential signal between channels 2 and
4 (and COMMonmode2 refers to the common mode channel between these same
channels).

<N> CHANnel<N> is an integer, 1- 4.
FUNCtion<N> and WMEMory<N> are:

An integer, 1- 4, representing the selected function or waveform memory

<P> An integer, 1- 2.

Example This example sets the DFE source to Channel 1.
10 OUTPUT 707;":SPRocessing:DFEQualizer:SOURce Channel1"
20 END

Query :SPRocessing:DFEQualizer:SOURce?

The :SPRocessing:DFEQualizer:SOURce? query returns the DFE source.

32-33

Serial Data Equalization Commands
SPRocessing:DFEQualizer:NTAPs

SPRocessing:DFEQualizer:NTAPs

Command :SPRocessing:DFEQualizer:NTAPs <number>

The :DFEQualizer:NTAPs command sets the number of taps to be used in the DFE
algorithm.
DFE tap indices always begin with 1 and extend to the number of taps.

<number> An integer between 2 and 40

Example This example sets the number of DFE taps to 3.
10 OUTPUT 707;":SPRocessing:DFEQualizer:NTAPs 3"
20 END

Query :SPRocessing:DFEQualizer:NTAPs?

The :SPRocessing:DFEQualizer:NTAPs? query returns the number of DFE taps.

32-34

Serial Data Equalization Commands
SPRocessing:DFEQualizer:TAP

SPRocessing:DFEQualizer:TAP

Command :SPRocessing:DFEQualizer:TAP <tap>, <value>

The :DFEQualizer:TAP command sets the tap value for each DFE tap. For example,
when <tap> is equal to 0 then the 0th tap is set to <value>.
DFE tap indices always start at 1 and extend to the number of taps.

<tap> The tap number; when <tap> == 0, Tap 1 is set

<value> The tap value

Example This example sets the DFE Tap 1 to -1.432.
10 OUTPUT 707;":SPRocessing:DFEQualizer:TAP 0,-1.432"
20 END

Query :SPRocessing:DFEQualizer:TAP?

The :SPRocessing:DFEQualizer:TAP? query returns the DFE tap values.

32-35

Serial Data Equalization Commands
SPRocessing:DFEQualizer:TAP:WIDTh

SPRocessing:DFEQualizer:TAP:WIDTh

Command :SPRocessing:DFEQualizer:TAP:WIDTh <width>

The :DFEQualizer:TAP:WIDTh command sets the Eye Width field for the DFE tap
optimization. Setting the width to 0.0 means the optimization is only preformed at the
location of the clock. Setting the width to 1.0 means the entire acquisition is used in
the optimization. The default value for DFE is 0.0. For more information on this
parameter, refer to the N5461A Infiniium Seriald Data Equalization User’s Guide.

<width> A real number between 0.0 and 1.0.

Example This example sets the eye width to 0.0.
10 OUTPUT 707;":SPRocessing:DFEQualizer:TAP:WIDTh 0.0"
20 END

Query :SPRocessing:DFEQualizer:TAP:WIDTh?

The :SPRocessing:DFEQualizer:TAP? query returns the eye width used in the DFE
tap optimization.

32-36

Serial Data Equalization Commands
SPRocessing:DFEQualizer:TAP:DELay

SPRocessing:DFEQualizer:TAP:DELay

Command :SPRocessing:DFEQualizer:TAP:DELay <delay>

The :DFEQualizer:TAP:DELay command specifies the amount of drift the equalized
eye diagram has relative to the unequalized one. This drift is then accounted for so
the two eyes overlap. For more information on this parameter, refer to the N5461A
Infiniium Seriald Data Equalization User’s Guide.

<delay> A real number

Query :SPRocessing:DFEQualizer:TAP:DELay?

The :SPRocessing:DFEQualizer:TAP:DELay? query returns the value for the DFE
Delay field.

32-37

Serial Data Equalization Commands
SPRocessing:DFEQualizer:TAP:MAX

SPRocessing:DFEQualizer:TAP:MAX

Command :SPRocessing:DFEQualizer:TAP:MAX <max_tap_value>

Some standards have upper and lower limits on the tap values. The
:DFEQualizer:TAP:MAX command sets the upper limit on taps determined through
optimization.

<max_tap_value> A real number

Example This example sets the Upper Limit field to 3.23.
10 OUTPUT 707;":SPRocessing:DFEQualizer:TAP:MAX 3.23"
20 END

Query :SPRocessing:DFEQualizer:TAP:MAX?

The :SPRocessing:DFEQualizer:TAP:MAX? query returns the Upper Limit used in
the DFE tap optimization.

32-38

Serial Data Equalization Commands
SPRocessing:DFEQualizer:TAP:MIN

SPRocessing:DFEQualizer:TAP:MIN

Command :SPRocessing:DFEQualizer:TAP:MIN <min_tap_value>

Some standards have upper and lower limits on the tap values. The
:DFEQualizer:TAP:MIN command sets the lower limit on taps determined through
optimization.

<min_tap_value> A real number

Example This example sets the Lower Limit field to 3.23.
10 OUTPUT 707;":SPRocessing:DFEQualizer:TAP:MIN 3.23"
20 END

Query :SPRocessing:DFEQualizer:TAP:MIN?

The :SPRocessing:DFEQualizer:TAP:MIN? query returns the Lower Limit used in
the DFE tap optimization.

32-39

Serial Data Equalization Commands
SPRocessing:DFEQualizer:TAP:GAIN

SPRocessing:DFEQualizer:TAP:GAIN

Command :SPRocessing:DFEQualizer:TAP:GAIN <gain>

 The eye diagram drawn after DFE is applied is attenuated. To amplify the eye back
to its original size (so you can directly compare the eye at the receiver to the eye at
the transmitter), a gain factor needs to be applied. The :DFEQualizer:TAP:GAIN
command allows you to set this gain. For more information on this parameter, refer
to the N5461A Infiniium Seriald Data Equalization User’s Guide.

<gain> A real number

Example This example sets the gain to 3.23.
10 OUTPUT 707;":SPRocessing:DFEQualizer:TAP:GAIN 3.23"
20 END

Query :SPRocessing:DFEQualizer:TAP:GAIN?

The :SPRocessing:DFEQualizer:TAP:GAIN? query returns the current gain value.

32-40

Serial Data Equalization Commands
SPRocessing:DFEQualizer:TAP:UTARget

SPRocessing:DFEQualizer:TAP:UTARget

Command :SPRocessing:DFEQualizer:TAP:UTARget <upper_target>

The Upper Target field dictates the logical high value used in the DFE algorithm. For
example, in DFE, when a bit is determined to be a logical high, its value will be equal
to Upper Target. The :DFEQualizer:TAP:UTARget command allows you to set this
value.

<upper_target> A real number

Example This example sets the Upper Target to 1.0.
10 OUTPUT 707;":SPRocessing:DFEQualizer:TAP:UTARget 1.0"
20 END

Query :SPRocessing:DFEQualizer:TAP:UTARget?

The :SPRocessing:DFEQualizer:TAP:UTARget? query returns the current value for
the Upper Target field.

32-41

Serial Data Equalization Commands
SPRocessing:DFEQualizer:TAP:LTARget

SPRocessing:DFEQualizer:TAP:LTARget

Command :SPRocessing:DFEQualizer:TAP:LTARget <lower_target>

The Lower Target field dictates the logical low value used in the DFE algorithm. For
example, in DFE, when a bit is determined to be a logical low, its value will be equal
to Lower Target. The :DFEQualizer:TAP:LTARget command allows you to set this
value.

<lower_target> A real number

Example This example sets the Lower Target to 1.0.
10 OUTPUT 707;":SPRocessing:DFEQualizer:TAP:LTARget 1.0"
20 END

Query :SPRocessing:DFEQualizer:TAP:LTARget?

The :SPRocessing:DFEQualizer:TAP:LTARget? query returns the current value for
the Lower Target field.

32-42

Serial Data Equalization Commands
SPRocessing:DFEQualizer:TAP:AUTomatic

SPRocessing:DFEQualizer:TAP:AUTomatic

Command :SPRocessing:DFEQualizer:TAP:AUTomatic

The :DFEQualizer:TAP:AUTomatic command starts the DFE tap optimization. Be
sure to first specify the number of taps and the max/min tap values.

Example This example starts the DFE tap optimization.
10 OUTPUT 707;":SPRocessing:DFEQualizer:TAP:AUTomatic"
20 END

Query There is no query for this command.

33

Error Messages

33-2

Error Messages

This chapter describes the error messages and how they are generated. The
possible causes for the generation of the error messages are also listed in the
following table.

33-3

Error Messages
Error Queue

Error Queue

As errors are detected, they are placed in an error queue. This queue is first in, first
out. If the error queue overflows, the last error in the queue is replaced with error -
350, “Queue overflow.” Anytime the error queue overflows, the oldest errors remain
in the queue, and the most recent error is discarded. The length of the oscilloscope's
error queue is 30 (29 positions for the error messages, and 1 position for the “Queue
overflow” message). Reading an error from the head of the queue removes that error
from the queue, and opens a position at the tail of the queue for a new error. When all
errors have been read from the queue, subsequent error queries return 0, “No error.”
The error queue is cleared when any of the following occur:
• the instrument is powered up,
• a *CLS command is sent,
• the last item from the queue is read, or
• the instrument is switched from talk only to addressed mode on the front panel.

33-4

Error Messages
Error Numbers

Error Numbers

The error numbers are grouped according to the type of error that is detected.
• +0 indicates no errors were detected.
• -100 to -199 indicates a command error was detected
• -200 to -299 indicates an execution error was detected.
• -300 to -399 indicates a device-specific error was detected.
• -400 to-499 indicates a query error was detected.
• +1 to +32767 indicates an oscilloscope specific error has been detected.

33-5

Error Messages
Command Error

Command Error

An error number in the range -100 to -199 indicates that an IEEE 488.2 syntax error
has been detected by the instrument's parser. The occurrence of any error in this class
sets the command error bit (bit 5) in the event status register and indicates that one of
the following events occurred:
• An IEEE 488.2 syntax error was detected by the parser. That is, a computer-to-

oscilloscope message was received that is in violation of the IEEE 488.2 standard.
This may be a data element that violates the oscilloscope's listening formats, or a
data type that is unacceptable to the oscilloscope.

• An unrecognized header was received. Unrecognized headers include incorrect
oscilloscope-specific headers and incorrect or unimplemented IEEE 488.2
common commands.

• A Group Execute Trigger (GET) was entered into the input buffer inside of an
IEEE 488.2 program message.

Events that generate command errors do not generate execution errors, oscilloscope-
specific errors, or query errors.

33-6

Error Messages
Execution Error

Execution Error

An error number in the range -200 to -299 indicates that an error was detected by the
instrument's execution control block. The occurrence of any error in this class causes
the execution error bit (bit 4) in the event status register to be set. It also indicates that
one of the following events occurred:
• The program data following a header is outside the legal input range or is

inconsistent with the oscilloscope's capabilities.
• A valid program message could not be properly executed due to some oscilloscope

condition.
Execution errors are reported by the oscilloscope after expressions are evaluated and
rounding operations are completed. For example, rounding a numeric data element
will not be reported as an execution error. Events that generate execution errors do
not generate command errors, oscilloscope specific errors, or query errors.

33-7

Error Messages
Device- or Oscilloscope-Specific Error

Device- or Oscilloscope-Specific Error

An error number in the range of -300 to -399 or +1 to +32767 indicates that the
instrument has detected an error caused by an oscilloscope operation that did not
properly complete. This may be due to an abnormal hardware or firmware condition.
For example, this error may be generated by a self-test response error, or a full error
queue. The occurrence of any error in this class causes the oscilloscope-specific error
bit (bit 3) in the event status register to be set.

33-8

Error Messages
Query Error

Query Error

An error number in the range-400 to-499 indicates that the output queue control of
the instrument has detected a problem with the message exchange protocol. An
occurrence of any error in this class should cause the query error bit (bit 2) in the event
status register to be set. An occurrence of an error also means one of the following is
true:
• An attempt is being made to read data from the output queue when no output is

either present or pending.
• Data in the output queue has been lost.

33-9

Error Messages
List of Error Messages

List of Error Messages

Table 25-1 a list of the error messages that are returned by the parser on this
oscilloscope.

Table 0-6 Error Messages

0 No error The error queue is empty. Every error in the queue has been read
(SYSTEM:ERROR? query) or the queue was cleared by power-up or *CLS.

-100 Command error This is the generic syntax error used if the oscilloscope cannot detect more
specific errors.

-101 Invalid character A syntactic element contains a character that is invalid for that type.
-102 Syntax error An unrecognized command or data type was encountered.
-103 Invalid separator The parser was expecting a separator and encountered an illegal character.
-104 Data type error The parser recognized a data element different than one allowed. For

example, numeric or string data was expected but block data was received.
-105 GET not allowed A Group Execute Trigger was received within a program message.
-108 Parameter not allowed More parameters were received than expected for the header.
-109 Missing parameter Fewer parameters were received than required for the header.
-112 Program mnemonic too

long
The header or character data element contains more than twelve characters.

-113 Undefined header The header is syntactically correct, but it is undefined for the oscilloscope.
For example, *XYZ is not defined for the oscilloscope.

-121 Invalid character in
number

An invalid character for the data type being parsed was encountered. For
example, a “9” in octal data.

-123 Numeric overflow Number is too large or too small to be represented internally.
-124 Too many digits The mantissa of a decimal numeric data element contained more than 255

digits excluding leading zeros.
-128 Numeric data not allowed A legal numeric data element was received, but the oscilloscope does not

accept one in this position for the header.
-131 Invalid suffix The suffix does not follow the syntax described in IEEE 488.2 or the suffix is

inappropriate for the oscilloscope.
-138 Suffix not allowed A suffix was encountered after a numeric element that does not allow suffixes.
-141 Invalid character data Either the character data element contains an invalid character or the

particular element received is not valid for the header.
-144 Character data too long
-148 Character data not allowedA legal character data element was encountered where prohibited by the

oscilloscope.
-150 String data error This error can be generated when parsing a string data element. This

particular error message is used if the oscilloscope cannot detect a more
specific error.

33-10

Error Messages
List of Error Messages

-151 Invalid string data A string data element was expected, but was invalid for some reason. For
example, an END message was received before the terminal quote character.

-158 String data not allowed A string data element was encountered but was not allowed by the oscilloscope
at this point in parsing.

-160 Block data error This error can be generated when parsing a block data element. This
particular error message is used if the oscilloscope cannot detect a more
specific error.

-161 Invalid block data
-168 Block data not allowed A legal block data element was encountered but was not allowed by the

oscilloscope at this point in parsing.
-170 Expression error This error can be generated when parsing an expression data element. It is

used if the oscilloscope cannot detect a more specific error.
-171 Invalid expression
-178 Expression data not

allowed
Expression data was encountered but was not allowed by the oscilloscope at
this point in parsing.

-200 Execution error This is a generic syntax error which is used if the oscilloscope cannot detect
more specific errors.

-212 Arm ignored
-213 Init ignored
-214 Trigger deadlock
-215 Arm deadlock
-220 Parameter error
-221 Settings conflict
-222 Data out of range Indicates that a legal program data element was parsed but could not be

executed because the interpreted value is outside the legal range defined by
the oscilloscope.

-223 Too much data Indicates that a legal program data element of block, expression, or string
type was received that contained more data than the oscilloscope could handle
due to memory or related oscilloscope-specific requirements.

-224 Illegal parameter value
-230 Data corrupt or stale
-231 Data questionable
-240 Hardware error
-241 Hardware missing
-250 Mass storage error
-251 Missing mass storage
-252 Missing media
-253 Corrupt media
-254 Media full
-255 Directory full
-256 File name not found
-257 File name error

33-11

Error Messages
List of Error Messages

-258 Media protected
-260 Expression error
-261 Math error in expression
-300 Device specific error
-310 System error Indicates that a system error occurred.
-311 Memory error
-312 PUD memory error
-313 Calibration memory lost
-314 Save/recall memory lost
-315 Configuration memory lost
-321 Out of memory
-330 Self-test failed
-350 Queue overflow Indicates that there is no room in the error queue and an error occurred but

was not recorded.
-370 No sub tests are defined for

the selected self test
-371 Self Test status is corrupt

or no self test has been
executed

-372 This product configuration
does not support the
requested self test

-373 This product configuration
does not support the
requested source

-374 The requested self test log
file could not be found

-375 Attenuator relay actuation
counts can only be modified
during factory service

-400 Query error This is the generic query error.
-410 Query INTERRUPTED
-420 Query UNTERMINATED
-430 Query DEADLOCKED
-440 Query UNTERMINATED

after indefinite response

33-12

Index

Index-1

Symbols
...

Ellipsis 1-5

Numerics
707 1-20
9.99999E+37

Infinity Representation 6-12

A
Aborting a digitize operation 2-11
aborting a digitize operation 1-18
ABSolute 16-5
absolute voltage

and VMAX 23-193
and VMIN 23-197

accuracy and probe calibration 11-4
Acquire Commands 8-2

AVERage 8-3
COMPlete 8-5
COMPlete STATe 8-7
COUNt 8-4
INTerpolate 8-8
MODE 8-9
POINts 8-11, 8-15
POINts AUTO 8-16
SRATe 8-20, 8-23
SRATe AUTO 8-25, 8-26

acquisition
ACQuire AVER and completion 8-5
points 8-11
record length 8-11
sample program 7-7
sample rate 8-20, 8-23

ADD 16-6
address, GPIB default 2-7
advanced

COMM triggering 29-86
delay trigger modes 29-107, 29-116
delay triggering 29-108, 29-117
logic triggering 29-94, 29-100
pattern triggering 29-95
state triggering 29-101
TV commands 29-123, 29-129

advanced trigger violation modes 29-136
pulse width violation mode 29-138
setup violation mode 29-144
transition violation mode 29-170

advisory line, reading and writing to 27-2
AER? 25-4, 25-5
algebraic sum of functions 16-6
ALIGn 22-4
AlignFIT 22-5
ALL, and VIEW 30-61
alphanumeric

characters in embedded string 1-13
strings 1-11

AMPS as vertical units 10-46, 10-57
AND

ENABle 29-12
AND:ENABle:SOURce 29-13
AREA 17-3, 23-9, 23-32, 23-100
Arm Event Register

ARM bit 12-21
Arming the trigger 2-11
ASCII

and FORMat 30-43
character 32 1-5
linefeed 1-13

ATER? 25-6
AttenSET?

in self-test commands 26-3
attenuation factor for probe 10-33, 11-4
AUTO 8-25, 8-26, 22-16
automatic measurements

sample program 7-8
AUToscale 25-7, 25-8, 25-9, 25-10

during initialization 1-15
Aux Out connector 11-6
availability of measured data 4-2
AVERage 8-3, 16-7, 22-17

and acquisition completion 8-5
and count 8-4, 22-18

AXIS 18-4

B
BANDpass query 30-6, 32-4, 32-5, 32-6,

32-7, 32-8, 32-9, 32-13, 32-14, 32-15,
32-16, 32-17, 32-18, 32-19, 32-20,
32-21, 32-22, 32-23, 32-24, 32-25,
32-26, 32-27, 32-31, 32-32, 32-33,
32-34, 32-35, 32-36, 32-37, 32-38,
32-39, 32-40, 32-41, 32-42

bandwidth limit 30-6
basic command structure 1-16
basic operations 1-2

BASIC sample programs 7-2
BEEP 25-10
BIND

in MTESt SCALe command 22-39
Bit Definitions in Status Reporting 4-3
BLANk 25-12

and VIEW 25-37
blanking the user text area 15-21
block data 1-4, 1-21

in learnstring 1-4
Block Diagram

Status Reporting Overview 4-3
Braces 1-5
Brackets

Square 1-5
buffer, output 1-10, 1-19
buffered responses 6-12
Bus Activity, Halting 2-11
Bus Commands 2-11
BWIDth 23-10

in TRIG ADV COMM 29-88
in TRIG COMM 29-24

BYTE
and FORMat 30-44
Understanding the format 30-39

BYTeorder 30-7
and DATA 30-14

C
C Program

DATA? Analog Channels 30-15
DATA? Digital Channels 30-28

C sample programs 7-2
Calibration Commands 11-2, 11-5

OUTPut 11-6
SKEW 11-7
STATus? 11-8

calibration status 11-8
CANCel

in self-test command 26-3
CDIRectory 14-3
CDISplay (Clear DISplay) 25-13
center screen voltage 10-32, 10-44
CGRade 15-3, 15-20
Channel Commands 10-2

DISPlay 10-4, 10-5, 10-6, 10-7, 10-8,
10-9, 10-11, 10-12, 10-14

EADapter 10-37

Index

Index-2

ECoupling 10-39
INPut 10-16, 10-17, 10-19, 10-21,

10-23, 10-24, 10-25, 10-27, 10-29,
10-31

OFFSet 10-32
PROBe 10-33
PROBe ATTenuation 10-35, 10-36
PROBe EXTernal 10-41
PROBe EXTernal GAIN 10-42
PROBe EXTernal OFFSet 10-44
PROBe EXTernal UNITs 10-46
PROBe GAIN 10-48, 10-49, 10-50,

10-51
PROBe ID? 10-52
PROBe SKEW 10-53
PROBe STYPe 10-54
RANGe 10-55
SCALe 10-56
UNITs 10-57

CHANnel PROBe ID? 10-52
channels, and VIEW 30-61
channel-to-channel skew factor 11-7
character program data 1-11
cleaning the instrument Notices-1
CLEar 23-23
Clearing

Buffers 2-11
Pending Commands 2-11

clearing
DONE bit 4-17
error queue 4-18, 33-3
registers and queues 4-19
Standard Event Status Register 4-11,

12-7
status data structures 12-4
TRG bit 4-10, 4-17

clipped waveforms, and measurement error
23-8

CLOCk 23-24
and STATe 29-61, 29-102
in TRIG ADV STATe 29-102
in TRIG STATe 29-61

CLOCk METHod 23-25
CLOCk VERTical 23-28, 23-29, 32-10,

32-28
CLOCk VERTical RANGe 23-31, 32-12,

32-30
*CLS (Clear Status) 12-4

CME bit 12-6, 12-8
COLumn 15-7
combining

commands in same subsystem 1-8
long- and short-form headers 1-11

combining compound and simple
commands 1-14

Command
*ESE 12-5
ABSolute 16-5
ADD 16-6
AER? 25-4, 25-5
ALIGn 22-4
AlignFIT 22-5
AMASk CREate 22-7
AMASk SAVE|STORe 22-10
AMASk SOURce 22-8
AMASk UNITs 22-11
AMASk XDELta 22-12
AMASk YDELta 22-14
AREA 17-3, 23-9, 23-32, 23-100
ATER? 25-6
AUTO 22-16
AUToscale 25-7, 25-8, 25-9, 25-10
AVERage 8-3, 16-7, 22-17
AVERage COUNt 22-18
AXIS 18-4
BEEP 25-11, 25-16, 25-17
BLANk 25-12
BWIDth 23-10
CANCel 26-3
CDIRectory 14-3
CDISplay 25-13
CGRade 15-3, 15-20

LEVels? 15-5
CGRade CROSsing 23-13
CGRade DCDistortion 23-14
CGRade EHEight 23-15
CGRade EWIDth 23-17
CGRade JITTer 23-21
CGRade QFACtor 23-22
CHANnel PROBe ID? 10-52
CLEar 23-23
CLear Status 12-4
CLOCk 23-24
CLOCk METHod 23-25
CLOCk VERTical 23-28, 23-29, 32-10,

32-28

CLOCk VERTical RANGe 23-31,
32-12, 32-30

COLumn 15-7
COMMonmode 16-9
COMPlete 8-5
COMPlete STATe 8-7
CONNect 15-8, 30-53, 30-59
COPY 14-4
COUNt 8-4
COUNt FAILures? 22-19, 22-20, 22-22
COUNt FWAVeforms? 22-21
COUNt WAVeforms? 22-23
CTCDutycycle 23-33
CTCJitter 23-35
CTCNwidth 23-37
CTCPwidth 23-39
CURSor? 21-3
DATA? 15-9
DATarate 23-11, 23-41, 23-210
DATE 27-3
DEBug 27-4
DELay 19-3
DELete 14-5, 22-24
DELTatime 23-43
DIFF 16-10
DIGitize 1-17, 25-14
DIRectory? 14-6
DISPlay 10-4, 10-5, 10-6, 10-7, 10-8,

10-9, 10-11, 10-12, 10-14, 16-12,
31-3, 31-4

DIVide 16-13
DPRinter 17-4
DSP 27-6
DUTYcycle 23-47
EADapter 10-37
ECoupling 10-39
EDGE 19-9
ENABle 22-25
ERRor? 27-7
Event Status Enable 12-5
FACTors 17-6
FAIL 19-4, 20-3
FALLtime 23-49
FFT DFRequency 23-51
FFT FREQuency 16-14, 23-55
FFT MAGNitude 23-57
FFT PEAK1 23-59
FFT PEAK2 23-60

Index

Index-3

FFT REFerence 16-15
FFT RESolution 16-16
FFT THReshold 23-61
FFT WINDow 16-17
FFTMagnitude 16-19
FFTPhase 16-21
FOLDing 22-26
FOLDing:BITS 22-27
FREQuency 23-62
GPIB Mode 2-6
GRATicule 15-10
GRATicule INTensity 15-10
HAMPlitude 22-28
HEADer 27-8, 27-10
HIGHpass 16-23, 16-31
HISTogram HITS 23-64
HISTogram M1S 23-66
HISTogram M2S 23-68
HISTogram M3S 23-70
HOLDtime 23-79
HORizontal 16-24
HORizontal POSition 16-25
HORizontal RANGe 16-26
HYSTeresis 19-10
HYSTersis 19-12
IMAGe 17-7
IMPedance 22-29
INPut 10-16, 10-17, 10-19, 10-21,

10-23, 10-24, 10-25, 10-27, 10-29,
10-31

INTegrate 16-27
INTerpolate 8-8
INVert 16-29, 22-31
JITTer HISTogram 23-82
JITTer MEASurement 23-83
JITTer SPECtrum 23-84
JITTer SPECtrum HORizontal 23-85
JITTer SPECtrum HORizontal

POSition 23-86
JITTer SPECtrum HORizontal RANGe

23-88
JITTer SPECtrum VERTical 23-89
JITTer SPECtrum VERTical OFFSet

23-90
JITTer SPECtrum VERTical RANGe

23-91
JITTer SPECtrum WINDow 23-92
JITTer STATistics 23-93

JITTer TRENd 23-94
JITTer TRENd SMOoth 23-95
JITTer TRENd SMOoth POINts 23-96
JITTer TRENd VERTical 23-97
JITTer TRENd VERTical OFFSet

23-30, 23-98, 32-11, 32-29
JITTer TRENd VERTical RANGe

23-99
LAMPlitude 22-32
LINE 15-13
LLEVel 19-13
LLIMit 19-5, 20-4
LOAD 14-7, 22-33, 31-5
LONGform 27-11
MAGNify 16-32
MAXimum 16-34
MDIRectory 14-8
MEASure FFT DMAGnitude 23-53
MEASurement 19-6, 20-5
MINimum 16-36
MODE 8-9, 18-5, 19-8, 19-18, 21-4
MODel? 25-20
MULTiply 16-38
NCJitter 23-101
NREGions? 22-34
NWIDth 23-106
OFFSet 10-32, 16-40
OPEE 25-21
OPER? 25-22
Operation Complete (*OPC) 12-12
Option (*OPT) 12-13
OUTPut 11-6
OVERshoot 23-108
OVLRegister? 25-23
PATTern 19-16
PATTern THReshold LEVel 29-98,

29-106
PERiod 23-110
PERSistence 15-14
PHASe 23-113
PLACement 19-19
POINts 8-11, 8-15
POINts AUTO 8-16
POSition 28-3
Power-on Status Clear (*PSC) 12-14
PRESet 27-13
PREShoot 23-116
PRINt 25-25

PRINters? 17-8
PROBe 10-33
PROBe ATTenuation 10-35, 10-36
PROBe EXTernal 10-41
PROBe EXTernal GAIN 10-42
PROBe EXTernal OFFSet 10-44
PROBe EXTernal UNITs 10-46
PROBe GAIN 10-48, 10-49, 10-50,

10-51
PROBe IMPedance? 22-35
PROBe SKEW 10-53
PROBe STYPe 10-54
PWD? 14-9
PWIDth 23-118
QUALifier CONDition 23-103,

23-104, 23-105, 23-115, 23-120,
23-182

QUALifier SOURce 23-121
QUALifier STATe 23-122
RANGe 10-55, 16-41, 28-4
Recall (*RCL) 12-15
RECall SETup 25-26
REFClock 28-5
REFerence 28-6
Reset (*RST) 12-16
RESults? 23-123
RISetime 23-126
RJDJ BER 23-130, 23-131
RJDJ EDGE 23-133
RJDJ INTerpolate 23-134
RJDJ PLENgth 23-135
RJDJ SOURce 23-137
RJDJ STATe 23-139
RJDJ UNITs 23-141
ROLL 28-7
ROW 15-15
RUMode 22-36

SOFailure 22-38
RUN 25-27
SAVE 31-6
SAVe:IMAGe 14-10
SAVe:JITTer 14-11, 14-12
SAVe:MEASurements 14-13
SAVe:SETup 14-14
SAVe:WAVeform 14-15
SCALe 10-56, 28-8
SCALe BIND 22-39
SCALe SIZE 18-6

Index

Index-4

SCALe X1 22-40
SCALe XDELta 22-41
SCALe Y1 22-42
SCALe Y2 22-43
SCOLor 15-16
SCOPETEST 26-4
SCRatch 23-142
SEGMented 14-36
SENDvalid 23-143
SERial 25-28
Service Request Enable (*SRE) 12-18
SETup 27-14
SETuptime 23-144
SINGle 25-29
SKEW 11-7
SLEWrate 23-147
SMOoth 16-42
SOURce 19-11, 19-14, 19-17, 19-20,

22-44, 23-149
SQRT 16-44
SQUare 16-45
SRATe 8-20, 8-23
SRATe AUTO 8-25, 8-26
STARt | STOP 22-46
STATe 19-21
STATistics 23-151
STATus? 11-8
STIMe 22-47, 22-49
STOP 25-32
STORe

WAVEform 25-35
STORe SETup 25-33, 25-34
STRing 15-19
SUBTract 16-46
TEDGe 23-152
TER? 25-36
TEST 20-7
TEXT 15-21
THResholds

ABSolute 23-154
HYSTeresis 23-156
METHod 23-158
PERCent 23-160
TOPBase 23-162, 23-164

TIEClock2 23-166
TIEData 23-169, 23-175
TIME 27-16
TITLe? 22-48

TMAX 23-172, 23-173, 23-174,
23-176

TMIN 23-178
TRIG ADV COMM BWID 29-88
TRIG ADV COMM ENCode 29-89
TRIG ADV COMM LEVel 29-90
TRIG ADV COMM PATTern 29-91
TRIG ADV COMM POLarity 29-92
TRIG ADV COMM SOURce 29-93
TRIG ADV EDLY ARM SLOPe

29-110
TRIG ADV EDLY ARM SOURce

29-109
TRIG ADV EDLY EVENt DELay

29-111
TRIG ADV EDLY EVENt SLOPe

29-113
TRIG ADV EDLY EVENt SOURce

29-112
TRIG ADV EDLY TRIG SLOPe

29-115
TRIG ADV EDLY TRIG SOURce

29-114
TRIG ADV PATT CONDition 29-96
TRIG ADV PATT LOGic 29-97
TRIG ADV STATe CLOCk 29-102
TRIG ADV STATe LOGic 29-103
TRIG ADV STATe LTYPe 29-104
TRIG ADV STATe SLOPe 29-105
TRIG ADV STV FIELd 29-125
TRIG ADV STV LINE 29-126
TRIG ADV STV SOURce 29-127
TRIG ADV STV SPOLarity 29-128
TRIG ADV TDLY ARM SLOPe

29-119
TRIG ADV TDLY ARM SOURce

29-118
TRIG ADV TDLY DELay 29-120
TRIG ADV TDLY TRIG SLOPe

29-122
TRIG ADV TDLY TRIG SOURce

29-121
TRIG ADV UDTV ENUMber 29-132
TRIG ADV UDTV PGTHan 29-133
TRIG ADV UDTV POLarity 29-134
TRIG ADV UDTV SOURce 29-135
TRIG ADV VIOL MODE 29-137
TRIG ADV VIOL PWID DIR 29-140

TRIG ADV VIOL PWID POL 29-141
TRIG ADV VIOL PWID WIDT

29-143
TRIG ADV VIOL PWIDth 29-142
TRIG ADV VIOL SET HOLD DSO

29-158
TRIG ADV VIOL SET HOLD DSO

HTHR 29-159
TRIG ADV VIOL SET HOLD DSO

LTHR 29-160
TRIG ADV VIOL SET HOLD TIME

29-161
TRIG ADV VIOL SET MODE 29-147
TRIG ADV VIOL SET SET CSO

29-148
TRIG ADV VIOL SET SET CSO

EDGE 29-150
TRIG ADV VIOL SET SET CSO LEV

29-149
TRIG ADV VIOL SET SET DSO

29-151
TRIG ADV VIOL SET SET DSO

HTHR 29-152
TRIG ADV VIOL SET SET DSO

LTHR 29-153
TRIG ADV VIOL SET SET TIME?

29-154
TRIG ADV VIOL SET SHOL CSO

29-162
TRIG ADV VIOL SET SHOL CSO

EDGE 29-164
TRIG ADV VIOL SET SHOL CSO

LEV 29-163
TRIG ADV VIOL SET SHOL DSO

29-165
TRIG ADV VIOL SET SHOL DSO

HTHR 29-166
TRIG ADV VIOL SET SHOL DSO

LTHR 29-167
TRIG ADV VIOL SET SHOL HTIMe

29-169
TRIG ADV VIOL SET SHOL STIMe

29-168
TRIG ADV VIOL TRAN 29-172
TRIG ADV VIOL TRAN SOUR

29-173
TRIG ADV VIOL TRAN SOUR

HTHR 29-174

Index

Index-5

TRIG ADV VIOL TRAN SOUR
LTHR 29-175

TRIG ADV VIOL TRAN TYPE
29-176

TRIG AND 29-12, 29-13
TRIG COMM BWID 29-24
TRIG COMM ENCode 29-25
TRIG COMM PATTern 29-26
TRIG COMM POLarity 29-27
TRIG COMM SOURce 29-28
TRIG DEL ARM SLOPe 29-30
TRIG DEL ARM SOURce 29-29
TRIG DEL EDEL SLOPe 29-33
TRIG DEL TDEL TIME 29-35
TRIG DEL TRIG SLOPe 29-37
TRIG DEL TRIG SOURce 29-36
TRIG DELay EDELay COUNt 29-31
TRIG DELay EDELay SOURce 29-32
TRIG EDGE COUPling 29-38
TRIG EDGE SLOPe 29-39
TRIG EDGE SOURce 29-40
TRIG GLITch POLarity 29-41
TRIG GLITch SOURce 29-42
TRIG GLITch WIDTh 29-43
TRIG HOLDoff 29-14, 29-15, 29-16,

29-17
TRIG HTHR 29-18
TRIG HYSTeresis 29-19
TRIG LEVel 29-20
TRIG LTHR 29-21
TRIG PATT CONDition 29-44
TRIG PATT LOGic 29-45
TRIG PWID DIR 29-46
TRIG PWID POL 29-47
TRIG PWID WIDT 29-50
TRIG PWIDth SOURce 29-48
TRIG PWIDth TPOInt 29-49
TRIG RUNT POLarity 29-51
TRIG RUNT QUALified 29-52, 29-78
TRIG RUNT SOURce 29-53
TRIG RUNT TIME 29-54
TRIG SHOL CSO 29-55
TRIG SHOL CSO EDGE 29-56
TRIG SHOL DSO 29-57
TRIG SHOL HTIMe 29-58
TRIG SHOL MODE 29-59
TRIG SHOL STIMe 29-60
TRIG STATe CLOCk 29-61

TRIG STATe LTYPe 29-63
TRIG STATe SLOPe 29-64
TRIG SWEep 29-22
TRIG TIM CONDition 29-65
TRIG TIM SOURce 29-66
TRIG TIM TIME 29-67
TRIG TRAN DIRection 29-68
TRIG TRAN SOUR 29-69
TRIG TRAN TIME 29-70, 29-79
TRIG TRAN TYPE 29-71
TRIG TV STV FIELd 29-73
TRIG TV STV LINE 29-72
TRIG TV STV SPOLarity 29-74, 29-76
TRIG TV UDTV ENUMber 29-77
TRIG TV UDTV PGTHan 29-80
TRIG TV UDTV POLarity 29-81
TRIG WIND SOURce 29-83
TRIG WIND TIME 29-84
TRIG WIND TPOI 29-85
TRIG WINDow CONDition 29-82
Trigger (*TRG) 12-22
TRIGger DELay MODE 29-34
TRIGger MODE 29-7, 29-10
TSTArt 21-5
TSTOp 21-7, 21-10
TVOLt 23-180
ULEVel 19-15
ULIMit 19-7, 20-8
UNITinterval 23-183
UNITs 10-57
VAMPlitude 23-185
VAVerage 23-187
VBASe 23-189
VERSus 16-48
VERTical 16-50
VIEW 25-37, 28-9
VIOL SET HOLD CSO 29-155
VIOL SET HOLD CSO EDGE 29-157
VIOL SET HOLD CSO LEV 29-156
VLOWer 23-191
VMAX 23-193
VMIDdle 23-195
VMIN 23-197
VPP 23-199
VRMS 23-201
VSTArt 21-9
VTIMe 23-204
VTOP 23-206

VUPPer 23-208
Wait-to-Continue (*WAI) 12-24
WAVeform BYTeorder 30-7
WAVeform FORMat 30-43
WAVeform SOURce 30-57
WAVeform VIEW 30-61
WINDow DEFault 18-7
WINDow DELay 28-10
WINDow POSition 28-12
WINDow RANGe 28-13
WINDow SCALe 28-14
WINDow SOURce 18-8
WINDow X1Position|LLIMit 18-10
WINDow X2Position|RLIMit 18-11
WINDow Y1Position|TLIMit 18-12
WINDow Y2Position|BLIMit 18-13
X1Position 21-12
X1Y1source 21-14
X2Position 21-13
X2Y2source 21-16
XOFFset 31-7
XRANge 31-8
Y1Position 21-19
Y2Position 21-20
YOFFset 31-9
YRANge 31-10

command
execution and order 3-4
structure 1-16

Command and Data Concepts
GPIB 2-6

Command Error 33-5
Status Bit 4-3

Command tree 6-4, 6-6
Command Types 6-4
Commands

MTEE 25-18
commands embedded in program messages

1-14
commas and spaces 1-6
comma-separated

variable file format 7-13
Common Command Header 1-8
Common Commands 12-2

Clear Status (*CLS) 12-4
Event Status Enable (*ESE) 12-5
Event Status Register (*ESR) 12-7
Identification Number (*IDN) 12-9

Index

Index-6

Learn (*LRN) 12-10
Operation Complete (*OPC) 12-12
Option (*OPT?) 12-13
Power-on Status Clear (*PSC?) 12-14
Recall (*RCL) 12-15
Reset (*RST) 12-16
Save (*SAV) 12-17
Service Request Enable (*SRE) 12-18
Status Byte (*STB?) 12-20
Test (*TST?) 12-23
Trigger (*TRG) 12-22
Wait-to-Continue (*WAI) 12-24
within a program message 12-3

COMMonmode 16-9
commonmode voltage of operands 16-9
Communicating Over the GPIB Interface

2-7
Communicating Over the LAN Interface

2-8
COMPlete 8-5
COMPlete query 30-8
COMPlete STATe 8-7
compound command header 1-7
compound queries 3-4
Computer Code and Capability 2-5
concurrent commands 6-12
CONDition

in TRIG ADV PATTern 29-96
in TRIG PATTern 29-44
in TRIG TIM 29-65
in TRIG WINDow 29-82

CONNect 15-8, 30-53, 30-59
conventions of programming 6-2
converting waveform data

from data value to Y-axis units 30-5
sample program 7-12

COPY 14-4
copying files 14-4
COUNt 8-4

in MTESt AVERage command 22-18
in TRIG DEL EDEL 29-31

COUNt query 30-9
COUPling

in TRIGger EDGE 29-24
COUPling query 30-10
coupling, input 10-16
CREate

in MTESt AMASk command 22-7

CROSsing
in MEASure CGRade command 23-13

CTCDutycycle 23-33
CTCJitter 23-35
CTCNwidth 23-37
CTCPwidth 23-39
CURSor? 21-3

D
data

acquisition 30-4
conversion 30-5

data in a learnstring 1-4
data in a program 1-6
Data Mode

GPIB 2-6
Data Structures

and Status Reporting 4-5
data transmission mode

and FORMat 30-43
DATA? 15-9, 30-11

Analog Channels C Program 30-15
Digital Channels C Program 30-28

DATarate 23-11, 23-41, 23-210
DATE 27-3
DCDistortion

in MEASure CGRade command 23-14
DDE bit 12-6, 12-8
DEBug 27-4
decimal 32 (ASCII space) 1-5
Decision Chart for Status Reporting 4-20
DEFault

in HISTogram WINDow command
18-7

Default
GPIB Address 2-7
Startup Conditions 2-4

default setup 27-13
Default Startup Conditions 2-4
defining functions 16-2
def-length block response data 1-21
DELay 19-3

in TRIG ADV EDLY EVENt 29-111
in TRIG ADV TDLY 29-120

delay
and WINDow DELay 28-10

delay trigger modes 29-107, 29-116
DELete 14-5, 22-24

deleting files 14-5
DELTatime 23-43
derivative of functions 16-10
Device Address

GPIB 2-7
LAN 2-8

device address 1-3, 1-4
Device Clear (DCL) 2-11
Device Clear Code and Capability 2-5
Device Dependent Error (DDE), Status Bit

4-4
Device- or Oscilloscope-Specific Error

33-7
Device Trigger Code and Capability 2-5
device-dependent data 1-21
DFREQuency

in MEASure FFT command 23-51
DIFF 16-10
DIGitize 25-14

setting up for execution 8-2
Digitize

Aborting 2-11
DIRectory? 14-6
Disabling Serial Poll 2-11
discrete derivative of functions 16-10
Disk Commands 14-2

CDIRectory 14-3
COPY 14-4
DELete 14-5
DIRectory? 14-6
LOAD 14-7
MDIRectory 14-8
PWD? 14-9
SAVe:IMAGe 14-10
SAVe:JITTer 14-11, 14-12
SAVe:MEASurements 14-13
SAVe:SETup 14-14
SAVe:WAVeform 14-15
SEGMented 14-36

DISPlay 10-4, 10-5, 10-6, 10-7, 10-8, 10-9,
10-11, 10-12, 10-14, 16-12, 31-3, 31-4

DISPlay Commands
CGRade 15-3, 15-20
CGRADE LEVels? 15-5
CGRade LEVels? 15-5

Display Commands 15-2
COLumn 15-7
CONNect 15-8, 30-53, 30-59

Index

Index-7

DATA? 15-9
GRATicule 15-10
GRATicule INTensity 15-10
LINE 15-13
PERSistence 15-14
ROW 15-15
SCOLor 15-16
STRing 15-19
TEXT 15-21

display persistence 15-14
DIVide 16-13
dividing functions 16-13
DMAGnitude

in MEASure FFT command 23-53
DPRinter 17-4
Driver Electronics Code and Capability 2-5
DSP (display) 27-6
duplicate mnemonics 1-9
DUTYcycle 23-47

E
EADapter 10-37
ECoupling 10-39
EDGE

trigger mode 29-23
EDGE trigger commands 29-23
EHEight

in MEASure CGRade command 23-15
Ellipsis

... 1-5
embedded

commands 1-14
strings 1-3, 1-4, 1-13

ENABle 22-25
Enable Register 12-3
ENCode

in TRIG ADV COMM 29-89
in TRIG COMM 29-25

End Of String (EOS) 1-13
End Of Text (EOT) 1-13
End-Or-Identify (EOI) 1-13
ENUMber

in TRIG ADV UDTV 29-132
in TRIG TV UDTV 29-77

EOI and IEEE 488.2 6-12
error

in measurements 23-7
messages 33-2

numbers 33-4
query interrupt 1-10, 1-19

Error Messages table 33-9
error queue 33-3

and status reporting 4-18
overflow 33-3

ERRor? 27-7
errors

exceptions to protocol 3-4
ESB (Event Status Bit) 4-4, 12-19, 12-21
ESB (Event Summary Bit) 12-5
*ESE (Event Status Enable) 12-5
ESR (Standard Event Status Register) 4-11
ETIMe 8-9
event monitoring 4-2
Event Registers Default 2-4
Event Status Bit (ESB) 4-4
Event Status Enable (*ESE)

Status Reporting 4-12
Event Summary Bit (ESB) 12-5
EWIDth

in MEASure CGRade command 23-17
EWINdow 23-19
Example Program 1-16

in initialization 1-16
example programs

C and BASIC 7-2
exceptions to protocol 3-4
EXE bit 12-6, 12-8
executing DIGITIZE 8-2
execution

errors, and command errors 33-5
of commands and order 3-4

Execution Error 33-6
Execution Error (EXE), Status Bit 4-3
exponential notation 1-12
exponents 1-12

F
FACTors 17-6
FAIL 19-4, 20-3
FAILures?

in MTESt COUNt command 22-19,
22-20, 22-22

fall time measurement setup 23-7
FALLtime 23-49
FFT Commands 23-7
FFTMagnitude 16-19

FFTPhase 16-21
FIELd

in TRIG ADV STV 29-125
in TRIG TV STV 29-73

FOLDing 22-26
FOLDing:BITS 22-27
FORMat 30-43

and DATA 30-14
formatting query responses 27-2
fractional values 1-12
FREQuency 23-62

in FUNCtion FFT command 16-14
in MEASure FFT command 23-55

frequency measurement setup 23-7
full-scale vertical axis 10-55
FUNCtion 16-4
function

and vertical scaling 16-41
time scale 16-3

Function Commands 16-2
ADD 16-6
AVERage 16-7
COMMonmode 16-9
DIFF 16-10
DISPlay 16-12
DIVide 16-13
FFT FREQuency 16-14
FFT REFerence 16-15
FFT RESolution 16-16
FFT WINDow 16-17
FFTMagnitude 16-19
FFTPhase 16-21
FUNCtion? 16-4
HORizontal 16-24
HORizontal POSition 16-25
HORizontal RANGe 16-26
INTegrate 16-27
INVert 16-29
MAGNify 16-32
MAXimum 16-34
MINimum 16-36
MULTiply 16-38
OFFSet 16-40
RANGe 16-41
SMOoth 16-42
SQRT 16-44
SQUare 16-45
SUBTract 16-46

Index

Index-8

VERSus 16-48
VERTical 16-50

functional elements of protocol 3-3
functions

and VIEW 30-61
combining in instructions 1-8

FWAVeforms?
in MTESt COUNt command 22-21

G
GAIN 10-42
gain and offset of a probe 11-4
gain factor for user-defined probe 10-42
glitch

trigger mode 29-40
GPIB

Interface Connector 2-3
GRATicule 15-10

HARDcopy AREA 17-3
Group Execute Trigger (GET) 2-11

H
Halting bus activity 2-11
HAMPlitude 22-28
Hardcopy Commands 17-2

AREA 17-3
DPRinter 17-4
FACTors 17-6
IMAGe 17-7
PRINters? 17-8

hardcopy of the screen 17-2
hardcopy output and message termination

3-4
HEADer 27-8, 27-10
header

stripped 7-11
within instruction 1-4

headers 1-4
types 1-7

Histogram Commands 18-2
AXIS 18-4
MODE 18-5
SCALe SIZE 18-6
WINDow DEFault 18-7
WINDow SOURce 18-8
WINDow X1Position|LLIMit 18-10
WINDow X2Position|RLIMit 18-11
WINDow Y1Position|TLIMit 18-12

WINDow Y2Position|BLIMit 18-13
HITS

in MEASure HISTogram command
23-64

HOLDoff
in TRIGger 29-12

HOLDtime 23-79
HORizontal 16-24
horizontal

functions, controlling 28-2
offset, and XOFFset 31-7
range, and XRANge 31-8
scaling and functions 16-2

HORizontal POSition 16-25
HORizontal RANGe 16-26
Host language 1-4
HP BASIC 5.0 1-2
HTHReshold 29-15

in TRIGger 29-98, 29-106
hue 15-17
HYSTeresis

in TRIGger 29-19

I
*IDN? (Identification Number) 12-9
IEEE 488.1 3-2

and IEEE 488.2 relationship 3-2
IEEE 488.2 3-2

compliance 3-2
conformity 1-2
Standard 1-2
Standard Status Data Structure Model

4-2
IMAGe 17-7
image specifier, -K 27-15
image specifiers

and PREamble 30-50
IMPedance 22-29
impedance, input 10-16
IMPedance?

in MTESt PROBe command 22-35
individual commands language 1-2
Infinity Representation 6-12
initialization 1-15

event status 4-2
IO routine 7-5
sample program 7-4

initializing oscilloscope

sample program 7-6
INPut 10-16, 10-17, 10-19, 10-21, 10-23,

10-24, 10-25, 10-27, 10-29, 10-31
Input Buffer

Clearing 2-11
input buffer 3-3

default condition 3-4
input coupling

and COUPling? 30-10
instruction headers 1-4
Instrument Address

GPIB 2-7
instrument status 1-22
integer definition 1-12
INTegrate 16-27
intensity 15-10
Interface

Capabilities 2-5
Clear (IFC) 2-11
GPIB Select Code 2-7

interface
functions 2-2

interface, initializing 1-15
INTerpolate 8-8
interpreting commands, parser 3-3
interrupted query 1-10, 1-19
Introduction to Programming 1-2
INVert 16-29, 22-31
inverting functions 16-29
ISCan

DELay 19-3
EDGE 19-9
FAIL 19-4
HYSTeresis 19-10, 19-12
LLEVel 19-13
MEASurement 19-6
MODE 19-8
SOURce 19-11
ULIMit 19-7

J
JITTer

in MEASure CGRade command 23-21
JITTer HISTogram 23-82
JITTer MEASurement 23-83
JITTer SPECtrum 23-84
JITTer SPECtrum HORizontal 23-85
JITTer SPECtrum HORizontal POSition

Index

Index-9

23-86
JITTer SPECtrum HORizontal RANGe

23-88
JITTer SPECtrum VERTical 23-89
JITTer SPECtrum VERTical OFFSet 23-90
JITTer SPECtrum VERTical RANGe

23-91
JITTer SPECtrum WINDow 23-92
JITTer STATistics 23-93
JITTer TRENd 23-94
JITTer TRENd SMOoth 23-95
JITTer TRENd SMOoth POINts 23-96
JITTer TRENd VERTical 23-97
JITTer TRENd VERTical OFFSet 23-30,

23-98, 32-11, 32-29
JITTer TRENd VERTical RANGe 23-99

K
-K 27-15

L
LAMPlitude 22-32
language for program examples 1-2
Learn (*LRN) 12-10
learnstring block data 1-4
LEVel

in TRIG ADV COMM 29-90
in TRIGger 29-20

LEVels?
in DISPlay CGRade command 15-5

LINE 15-13
in TRIG ADV STV 29-126
in TRIG TV STV 29-72

linefeed 1-13
List of Error Messages 33-9
Listener Code and Capability 2-5
Listeners, Unaddressing All 2-11
LLEVel 19-13
LLIMit 19-5, 20-4
LOAD 14-7, 22-33, 31-5
loading and saving 14-2
LOGic

and STATe 29-62, 29-103
in TRIG ADV PATT 29-97
in TRIG ADV STATe 29-103
in TRIG PATT 29-45
in TRIG STATe 29-62

LONGform 27-11

long-form headers 1-11
lowercase 1-11

headers 1-11
*LRN (Learn) 12-10
*LRN?

and SYSTem SETup? 27-15
LSBFirst, and BYTeorder 30-7
LTESt

FAIL 20-3
LLIMit 20-4
MEASurement 20-5
RESults? 20-6
TEST 20-7
ULIMit 20-8

LTHReshold 29-21
LTYPe

and STATe 29-63, 29-104
in TRIG ADV STATe 29-104
in TRIG STATe 29-63

luminosity 15-17

M
M1S

in MEASure HISTogram command
23-66

M2S
in MEASure HISTogram command

23-68
M3S

in MEASure HISTogram command
23-70

MAGNify 16-32
MAGNitude

in MEASure FFT command 23-57
MAIN, and VIEW 30-61
making measurements 23-7
Marker Commands 21-2

CURSor? 21-3
MODE 21-4
TSTArt 21-5
TSTOp 21-7, 21-10
VSTArt 21-9
X1Position 21-12
X1Y1source 21-14
X2Position 21-13
X2Y2source 21-16
XDELta? 21-18
Y1Position 21-19

Y2Position 21-20
YDELta? 21-21

Mask Test Commands 22-2
ALIGn 22-4
AlignFIT 22-5
AMASk CREate 22-7
AMASk SAVE|STORe 22-10
AMASk SOURce 22-8
AMASk UNITs 22-11
AMASk XDELta 22-12
AMASk YDELta 22-14
AUTO 22-16
AVERage 22-17
AVERage COUNt 22-18
COUNt FAILures? 22-19, 22-20, 22-22
COUNt FWAVeforms? 22-21
COUNt WAVeforms? 22-23
DELete 22-24
ENABle 22-25
FOLDing 22-26
FOLDing:BITS 22-27
HAMPlitude 22-28
IMPedance 22-29
INVert 22-31
LAMPlitude 22-32
LOAD 22-33
NREGions? 22-34
PROBe IMPedance? 22-35
RUMode 22-36
RUMode SOFailure 22-38
SCALe

BIND 22-39
Y1 22-42

SCALe X1 22-40
SCALe XDELta 22-41
SCALe Y1 22-42
SCALe Y2 22-43
SOURce 22-44
STARt | STOP 22-46
STIMe 22-47, 22-49
TITLe? 22-48

mask, Service Request Enable Register
12-18

Master Summary Status (MSS)
and *STB 12-20
Status Bit 4-4

MAV (Message Available) 4-4
bit 12-19, 12-21

Index

Index-10

MAX
in MEASure HISTogram command

23-72
MAXimum 16-34
MDIRectory 14-8
MEAN

in MEASure HISTogram command
23-73

MEASure
RESults and statistics 23-151

Measure Commands 23-2
ABSolute 16-5
AREA 23-9, 23-32, 23-100
BWIDth 23-10
CGRade CROSsing 23-13
CGRade DCDistortion 23-14
CGRade EHEight 23-15
CGRade EWIDth 23-17
CGRade JITTer 23-21
CGRade QFACtor 23-22
CLEar 23-23
CLOCk 23-24
CLOCk METHod 23-25
CLOCk VERTical 23-28, 23-29, 32-10,

32-28
CLOCk VERTical RANGe 23-31,

32-12, 32-30
CTCDutycycle 23-33
CTCJitter 23-35
CTCNwidth 23-37
CTCPwidth 23-39
DATarate 23-11, 23-41, 23-210
DELTatime 23-43
DUTYcycle 23-47
FALLtime 23-49
FFT DFRequency 23-51
FFT DMAGnitude 23-53
FFT FREQuency 23-55
FFT MAGNitude 23-57
FFT PEAK1 23-59
FFT PEAK2 23-60
FFT THReshold 23-61
FREQuency 23-62
HISTogram HITS 23-64
HISTogram M1S 23-66
HISTogram M2S 23-68
HISTogram M3S 23-70
HISTogram MAX 23-72

HISTogram MEAN 23-73
HISTogram MEDian 23-74
HISTogram MIN 23-75
HISTogram PEAK 23-76
HISTogram PP 23-77
HISTogram STDDev 23-78
HOLDtime 23-79
JITTer HISTogram 23-82
JITTer MEASurement 23-83
JITTer SPECtrum 23-84
JITTer SPECtrum HORizontal 23-85
JITTer SPECtrum HORizontal

POSition 23-86
JITTer SPECtrum HORizontal RANGe

23-88
JITTer SPECtrum VERTical 23-89
JITTer SPECtrum VERTical OFFSet

23-90
JITTer SPECtrum VERTical RANGe

23-91
JITTer SPECtrum WINDow 23-92
JITTer STATistics 23-93
JITTer TRENd 23-94
JITTer TRENd SMOoth 23-95
JITTer TRENd SMOoth POINts 23-96
JITTer TRENd VERTical 23-97
JITTer TRENd VERTical OFFSet

23-30, 23-98, 32-11, 32-29
JITTer TRENd VERTical RANGe

23-99
NCJitter 23-101
NWIDth 23-106
OVERshoot 23-108
PERiod 23-110
PHASe 23-113
PREShoot 23-116
PWIDth 23-118
QUALifier CONDition 23-103,

23-104, 23-105, 23-115, 23-120,
23-182

QUALifier SOURce 23-121
QUALifier STATe 23-122
RESults? 23-123
RISetime 23-126
RJDJ BER 23-130, 23-131
RJDJ EDGE 23-133
RJDJ INTerpolate 23-134
RJDJ PLENgth 23-135

RJDJ SOURce 23-137
RJDJ STATe 23-139
RJDJ UNITs 23-141
SCRatch 23-142
SENDvalid 23-143
SETuptime 23-144
SLEWrate 23-147
SOURce 23-149
STATistics 23-151
TEDGe 23-152
THResholds

ABSolute 23-154
HYSTeresis 23-156
METHod 23-158
PERCent 23-160
TOPBase 23-162, 23-164

TIEClock2 23-166
TIEData 23-169, 23-175
TMAX 23-172, 23-173, 23-174,

23-176
TMIN 23-178
TVOLt 23-180
UNITinterval 23-183
VAMPlitude 23-185
VAVerage 23-187
VBASe 23-189
VLOWer 23-191
VMAX 23-193
VMIDdle 23-195
VMIN 23-197
VPP 23-199
VRMS 23-201
VTIMe 23-204
VTOP 23-206
VUPPer 23-208

MEASurement 19-6, 20-5
LLIMit 19-5

measurement
error 23-7
setup 23-7
source 23-149

MEDian
in MEASure HISTogram command

23-74
memories, and VIEW 30-61
message

queue 4-19
termination with hardcopy 3-4

Index

Index-11

Message (MSG), Status Bit 4-4
Message Available (MAV)

and *OPC 12-12
Status Bit 4-4

Message Communications and System
Functions 3-2

Message Event Register 4-10
message exchange protocols

of IEEE 488.2 3-3
MIN

in MEASure HISTogram command
23-75

MINimum 16-36
Mnemonic Truncation 6-3
MODE 8-9, 18-5, 19-8, 19-18, 21-4

in TRIGger MODE 29-7, 29-10
MODel? 25-20
monitoring events 4-2
MSBFirst, and BYTeorder 30-7
MSG

bit in the status register 4-10
MSG bit 12-19, 12-21
MSS bit and *STB 12-20
MTEE 25-18
MTER? 25-19
multiple

program commands 1-14
queries 1-22
subsystems 1-14

Multiple numeric variables 1-22
MULTiply 16-38

N
NCJitter 23-101
NL (New Line) 1-13
NONMonotonic

EDGE 19-9
HYSTeresis 19-10
SOURce 19-11

NREGions? 22-34
NTSC TV trigger mode 29-123
numeric

program data 1-12
variable example 1-20
variables 1-20

NWIDth 23-106

O
OFFSet 10-32, 10-44, 16-40
offset and gain of a probe 11-4
*OPC (Operation Complete) 12-12
OPC bit 12-6, 12-8
OPEE 25-21
OPER bit 12-19, 12-21
OPER query 25-22
operands and time scale 16-3
operating the disk 14-2
Operation Complete (*OPC) 12-12

Status Bit 4-4
operation status 4-2
*OPT (Option) 12-13
Options, Program Headers 1-11
order of commands and execution 3-4
oscilloscope

trigger modes and commands 29-7
Oscilloscope Default GPIB Address 2-7
OUTPut 11-6
output buffer 1-10, 1-19
Output Command 1-4
Output Queue

Clearing 2-11
output queue 1-10, 4-18

default condition 3-4
definition 3-3

OUTPUT statement 1-3
overlapped and sequential commands 6-12
OVERshoot 23-108
OVLRegister query 25-23

P
PAL-M TV trigger mode 29-123
Parallel Poll Code and Capability 2-5
parametric measurements 23-2
Parser

Resetting 2-11
parser 1-15, 3-3

default condition 3-4
definition 3-3

passing values across the bus 1-10
PATTern 19-16

in TRIG ADV COMM 29-91
in TRIG COMM 29-26

PDETect 8-9
PEAK

in MEASure HISTogram command

23-76
PEAK1

in MEASure FFT command 23-59
PEAK2

in MEASure FFT command 23-60
peak-to-peak voltage, and VPP 23-199
Pending Commands, Clearing 2-11
PERiod 23-110
period measurement setup 23-7
PERsistence 15-14
PGTHan

in TRIG ADV UDTV 29-133
in TRIG TV UDTV 29-80

PHASe 23-113
PLACement 19-19
POINts 8-11, 8-15
POINts AUTO 8-16
POINts query 30-46
POLarity

and GLITch 29-41
and RUNT 29-51
in TRIG ADV COMM 29-92
in TRIG ADV UDTV 29-134
in TRIG COMM 29-27
in TRIG TV UDTV 29-81
in TRIGger GLITch 29-41
in TRIGger RUNT 29-51

PON bit 12-8
POSition 28-3
position

and WINDow POSition 28-12
pound sign (#) and block data 1-21
Power On (PON) status bit 4-3, 12-6
Power-up Condition 2-4
PP

in MEASure HISTogram command
23-77

PREamble 30-47
and DATA 30-14

PRESet 27-13
PREShoot 23-116
PRINt 25-25
PRINters? 17-8
printing

specific screen data 17-3
the screen 17-2

PROBe 10-33
PROBe ATTenuation 10-35, 10-36

Index

Index-12

probe attenuation factor 11-4
Probe Calibration 11-4
PROBe EXTernal 10-41
PROBe EXTernal GAIN 10-42
PROBe EXTernal OFFSet 10-44
PROBe EXTernal UNITs 10-46
PROBe GAIN 10-48, 10-49, 10-50, 10-51
PROBe SKEW 10-53
PROBe STYPe 10-54
program data 1-6
Program example 1-16
Program Header Options 1-11
program message terminator 1-13
program overview

initialization example 1-16
programming basics 1-2
Programming Conventions 6-2
programming examples language 1-2
Programming Getting Started 1-14
protocol

exceptions and operation 3-4
*PSC (Power-on Status Clear) 12-14
pulse width measurement setup 23-7
pulse width violation mode 29-138
PWD? 14-9
PWIDth 23-118
PWIDth DIRection 29-46
PWIDth POLarity 29-47
PWIDth SOURce 29-48
PWIDth TPOInt 29-49

Q
QFACtor

in MEASure CGRade command 23-22
Query

*SRE? 12-18
QUALified

and RUNT 29-52, 29-78
in TRIGger RUNT 29-52, 29-78

QUALifier
CONDition 23-103, 23-104, 23-120,

23-182
SOURce 23-121
STATe 23-122

quantization levels 7-12
Query 1-4, 1-10

*ESE? (Event Status Enable) 12-5
*ESR? (Event Status Register) 12-7

*STB? (Status Byte) 12-20
AER? 25-4, 25-5, 25-24
AREA? 17-3
ATER? 25-6, 25-9
AVERage? 8-3
BANDpass? 30-6, 32-4, 32-5, 32-6,

32-7, 32-8, 32-9, 32-13, 32-14,
32-15, 32-16, 32-17, 32-18, 32-19,
32-20, 32-21, 32-22, 32-23, 32-24,
32-25, 32-26, 32-27, 32-31, 32-32,
32-33, 32-34, 32-35, 32-36, 32-37,
32-38, 32-39, 32-40, 32-41, 32-42

BYTeorder? 30-7, 32-4, 32-5, 32-6,
32-7, 32-8, 32-9, 32-13, 32-14,
32-15, 32-16, 32-17, 32-18, 32-19,
32-20, 32-21, 32-22, 32-23, 32-24,
32-25, 32-26, 32-27, 32-31, 32-32,
32-33, 32-34, 32-35, 32-36, 32-37,
32-38, 32-39, 32-40, 32-41, 32-42

CHANnel PROBe ID? 10-52
COLumn? 15-7
COMPlete STATe? 8-7
COMPlete? 8-6, 30-8
CONNect? 15-8, 30-53, 30-59
COUNt? 8-4, 22-18, 30-9
COUPling? 30-10
CURSor? 21-3
DATA? 15-9, 30-11
DATE? 27-3
DEBug? 27-5
DEFine? 23-46
DELay? 19-3
DELTatime? 23-44
DIRectory? 14-6
DISPlay? 10-4, 10-5, 10-6, 10-7, 10-8,

10-9, 10-11, 10-12, 10-14, 10-41,
16-12, 31-4

DPRinter? 17-5
DSP? 27-6
DUTYcycle? 23-48
EADapter? 10-38
ECoupling? 10-40
EDGE 19-9
ERRor? 27-7
FACTors? 17-6
FAIL? 19-4, 20-3
FALLtime? 23-50
FFT RESolution? 16-16

FORMat? 30-45
FREQuency? 23-63
FUNCtion? 16-4
GRATicule? 15-11, 15-12
HEADer 27-8, 27-10
HORizontal POSition? 16-25
HORizontal RANGe? 16-26
HORizontal? 16-24
HYSTeresis 19-10, 19-12
Identification Number (*IDN?) 12-9
IMAGe? 17-7
INPut? 10-16, 10-17, 10-19, 10-21,

10-25, 10-27, 10-29, 10-31
INTerpolate? 8-8
Learn (*LRN?) 12-10
LLEVel? 19-13
LLIMit? 19-5, 20-4
LONGform? 27-11
MEASure FALLtime? 23-50
MEASure FFT DFRequency? 23-51
MEASure FFT DMAGnitude? 23-53
MEASure FFT FREQuency? 23-55
MEASure FFT MAGNitude? 23-57
MEASure FFT PEAK1? 23-59
MEASure FFT PEAK2? 23-60
MEASure FFT THReshold? 23-61
MEASurement 19-6, 20-5
MODE 19-8, 19-18
MODE? 8-10, 21-4
MODel? 25-20
MTEE? 25-18
MTER? 25-19
NWIDth? 23-107
OFFSet? 10-32, 10-45, 16-40
Option (*OPT?) 12-13
OUTPut? 11-6
OVERshoot? 23-109
PATTern 19-16
PERiod? 23-112
PERSistence? 15-14
PHASe? 23-114
PLACement 19-19
POINts AUTO? 8-16, 8-19
POINts? 8-14, 30-46
POSition? 28-3
Power-on Status Clear (*PSC?) 12-14
PREamble? 30-47
PREShoot? 23-117

Index

Index-13

PRINters? 17-8
PROBe ATTenuation? 10-35, 10-36
PROBe GAIN? 10-43, 10-48, 10-49,

10-50, 10-51
PROBe MODE? 10-54
PROBe SKEW? 10-53
PROBe? 10-34
PWD? 14-9
PWIDth? 23-119
QUALifier CONDition 23-103,

23-104, 23-105, 23-115, 23-120,
23-182

QUALifier SOURce? 23-121
QUALifier STATe? 23-122
RANGe? 10-55, 16-41, 28-4
REFClock 28-5
REFerence? 28-6
RESults 20-6
RESults? 23-123
RISetime? 23-127
RJDJ ALL? 23-128
RJDJ BER? 23-130, 23-132
RJDJ EDGE? 23-133
RJDJ INTerpolate? 23-134
RJDJ PLENgth? 23-135
RJDJ SOURce? 23-137
RJDJ STATe? 23-139
RJDJ TJRJDJ? 23-140
RJDJ UNITs? 23-141
ROLL 28-7
ROW? 15-15
SCALe? 10-56, 28-8
SCOLor? 15-18
SCOPETEST? 26-4
SENDvalid? 23-143
SETup? 27-14
SETuptime? 23-81, 23-146
SKEW? 11-7
SLEWrate? 23-147
SOURce 19-11, 19-14, 19-17, 19-20
SOURce? 23-149, 30-58
SRATe AUTO? 8-25, 8-26
SRATe? 8-21, 8-24
STATe 19-21
STATistics? 23-151
Status Byte (*STB) 12-20
STATus? 11-8
TEDGe? 23-153

TER? 25-36
Test (*TST?) 12-23
TEST? 20-7
TMAX? 23-172, 23-173, 23-174,

23-176
TMIN? 23-178
TRIG ADV COMM BWID? 29-88
TRIG ADV COMM ENCode? 29-89
TRIG ADV COMM LEVel? 29-90
TRIG ADV COMM PATTern? 29-91
TRIG ADV COMM POLarity? 29-92
TRIG ADV COMM SOURce? 29-93
TRIG ADV EDLY ARM SLOPe?

29-110
TRIG ADV EDLY ARM SOURce

29-109
TRIG ADV EDLY EVENt DELay?

29-111
TRIG ADV EDLY EVENt SLOPe?

29-113
TRIG ADV EDLY EVENt SOURce?

29-112
TRIG ADV EDLY TRIG SLOPe?

29-115
TRIG ADV EDLY TRIG SOURce?

29-114
TRIG ADV PATT COND? 29-96
TRIG ADV PATT LOGic? 29-97
TRIG ADV STATe CLOCk? 29-102
TRIG ADV STATe LOGic? 29-103
TRIG ADV STATe LTYPe? 29-104
TRIG ADV STATe SLOPe? 29-105
TRIG ADV STV FIELd? 29-125
TRIG ADV STV LINE? 29-126
TRIG ADV STV SOURce? 29-127
TRIG ADV STV SPOLarity? 29-128
TRIG ADV TDLY ARM SLOPe?

29-119
TRIG ADV TDLY ARM SOURce?

29-118
TRIG ADV TDLY DELay? 29-120
TRIG ADV TDLY TRIG SLOPe?

29-122
TRIG ADV TDLY TRIG SOURce?

29-121
TRIG ADV UDTV ENUMber? 29-132
TRIG ADV UDTV PGTHan? 29-133
TRIG ADV UDTV POLarity? 29-134

TRIG ADV UDTV SOURce? 29-135
TRIG ADV VIOL MODE? 29-137
TRIG ADV VIOL PWID DIR? 29-140
TRIG ADV VIOL PWID POL? 29-141
TRIG ADV VIOL PWID WIDT?

29-143
TRIG ADV VIOL PWIDth? 29-142
TRIG ADV VIOL SET HOLD CSO

EDGE? 29-157
TRIG ADV VIOL SET HOLD CSO

LEV? 29-156
TRIG ADV VIOL SET HOLD CSO?

29-155
TRIG ADV VIOL SET HOLD DSO

HTHR? 29-159
TRIG ADV VIOL SET HOLD DSO

LTHR? 29-160
TRIG ADV VIOL SET HOLD DSO?

29-158
TRIG ADV VIOL SET HOLD TIME?

29-161
TRIG ADV VIOL SET MODE?

29-147
TRIG ADV VIOL SET SET CSO

EDGE? 29-150
TRIG ADV VIOL SET SET CSO

LEV? 29-149
TRIG ADV VIOL SET SET CSO?

29-148
TRIG ADV VIOL SET SET DSO

HTHR? 29-152
TRIG ADV VIOL SET SET DSO

LTHR? 29-153
TRIG ADV VIOL SET SET DSO?

29-151
TRIG ADV VIOL SET SET TIME?

29-154
TRIG ADV VIOL SET SHOL CSO

EDGE? 29-164
TRIG ADV VIOL SET SHOL CSO

LEV? 29-163
TRIG ADV VIOL SET SHOL CSO?

29-162
TRIG ADV VIOL SET SHOL DSO

HTHR? 29-166
TRIG ADV VIOL SET SHOL DSO

LTHR? 29-167
TRIG ADV VIOL SET SHOL DSO?

Index

Index-14

29-165
TRIG ADV VIOL SET SHOL HTIMe?

29-169
TRIG ADV VIOL SET SHOL STIMe?

29-168
TRIG ADV VIOL TRAN SOUR

HTHR? 29-174
TRIG ADV VIOL TRAN SOUR

LTHR? 29-175
TRIG ADV VIOL TRAN SOUR?

29-173
TRIG ADV VIOL TRAN TYPE?

29-176
TRIG ADV VIOL TRAN? 29-172
TRIG AND:ENABle? 29-12
TRIG AND:SOURce? 29-13
TRIG COMM BWID? 29-24
TRIG COMM ENCode? 29-25
TRIG COMM PATTern? 29-26
TRIG COMM POLarity? 29-27
TRIG COMM SOURce? 29-28
TRIG DEL ARM SLOPe? 29-30
TRIG DEL ARM SOURce 29-29
TRIG DEL EDEL COUN? 29-31
TRIG DEL EDEL SLOPe? 29-33
TRIG DEL EDEL SOURce? 29-32
TRIG DEL TDEL TIME? 29-35
TRIG DEL TRIG SLOPe? 29-37
TRIG DEL TRIG SOURce? 29-36
TRIG EDGE COUPling? 29-38
TRIG EDGE SLOPe? 29-39
TRIG EDGE SOURce? 29-40
TRIG GLITch POLarity? 29-41
TRIG GLITch SOURce? 29-42
TRIG HOLDoff? 29-14, 29-15, 29-16,

29-17
TRIG HTHR? 29-18
TRIG HYSTeresis? 29-19
TRIG LEVel? 29-20, 29-98, 29-106
TRIG LTHR? 29-21
TRIG PATT COND? 29-44
TRIG PATT LOGic? 29-45
TRIG PWID DIR? 29-46
TRIG PWID POL? 29-47
TRIG PWID WIDT? 29-50
TRIG PWIDth SOURce? 29-48
TRIG PWIDth TPOInt? 29-49
TRIG RUNT POLarity? 29-51

TRIG RUNT QUALified? 29-52,
29-78

TRIG RUNT SOURce? 29-53
TRIG SHOL CSO EDGE? 29-56
TRIG SHOL CSO? 29-55
TRIG SHOL DSO? 29-57
TRIG SHOL HTIMe? 29-58
TRIG SHOL MODE? 29-59
TRIG SHOL STIMe? 29-60
TRIG STATe CLOCk? 29-61
TRIG STATe LOGic? 29-62
TRIG STATe LTYPe? 29-63
TRIG STATe SLOPe? 29-64
TRIG SWEep? 29-22
TRIG TIM COND? 29-65
TRIG TIM SOUR? 29-66
TRIG TIM TIME? 29-67
TRIG TRAN DIR? 29-68
TRIG TRAN SOUR? 29-69
TRIG TRAN TIME? 29-70, 29-79
TRIG TRAN TYPE? 29-71
TRIG TV SOURce? 29-75
TRIG TV STV FIELd? 29-73
TRIG TV STV LINE? 29-72
TRIG TV STV SPOLarity? 29-74,

29-76
TRIG TV UDTV ENUMber? 29-77
TRIG TV UDTV PGTHan? 29-80
TRIG TV UDTV POLarity? 29-81
TRIG WIND COND? 29-82
TRIG WIND SOUR? 29-83
TRIG WIND TIME? 29-84
TRIG WIND TPOI? 29-85
TRIGger DELay MODE? 29-34
TRIGger GLITch WIDTh? 29-43
TRIGger MODE? 29-11
TRIGger RUNT TIME? 29-54
TSTArt? 21-5
TSTOp? 21-8, 21-11
TVOLt? 23-180
TYPE? 30-60
ULEVel? 19-15
ULIMit? 19-7, 20-8
UNITs? 10-47, 10-57
VAMPlitude? 23-185
VAVerage? 23-188
VBASe? 23-190
VIEW? 28-9, 30-62

VLOWer? 23-191
VMAX? 23-194
VMIDdle? 23-195
VMIN? 23-198
VPP? 23-200
VRMS? 23-203
VSTArt? 21-9
VTIMe? 23-204
VTOP? 23-207
VUPPer? 23-209
WAVeform SEGMented COUNt?

30-54
WAVeform SEGMented TTAG?

30-55, 30-56
WINDow DELay? 28-11
WINDow POSition? 28-12
WINDow RANGe? 28-13
WINDow SCALe? 28-14
X1Position? 21-12
X1Y1source? 21-14
X2Position? 21-13
X2Y2source? 21-16
XDELta? 21-18
XDISplay? 30-63
XINCrement? 30-64
XOFFset? 31-7
XORigin? 30-65
XRANge? 30-66, 31-8
XREFerence? 30-67
XUNits? 30-68
Y1Position? 21-19
YDELta? 21-21
YDISplay? 30-69
YINCrement? 30-70
YOFFset? 31-9
YORigin? 30-71
YRANge? 30-72, 31-10
YREFerence? 30-73
YUNits? 30-74

query
headers 1-10
interrupt 1-10
response 1-19
responses, formatting 27-2

Query Error 33-8
QYE Status Bit 4-4

query interrupt 1-19
question mark 1-10

Index

Index-15

queue, output 1-10
quoted strings 15-13
quotes, with embedded strings 1-13
QYE bit 12-6, 12-8

R
RANGe 10-55, 16-41, 28-4
range

and WINDow RANGe 28-13
*RCL (Recall) 12-15
real number definition 1-12
real time mode 8-9

and interpolation 8-8
RECall 25-26
Receiving Common Commands 12-3
Receiving Information from the Instrument

1-19
REFClock 28-5
REFerence 28-6

in FUNCtion FFT command 16-15
register

save/recall 12-15, 12-17
Standard Event Status Enable 4-12

reliability of measured data 4-2
Remote Local Code and Capability 2-5
remote programming basics 1-2
REPetitive 8-9
Repetitive Strain Injury 5-2

Description 5-3
Using the Mouse 5-5, 5-6

representation of infinity 6-12
Request Control (RQC)

Status Bit 4-4
Request Service (RQS)

Default 2-4
status bit 4-4

Reset (*RST) 12-16
Resetting the Parser 2-11
RESolution

in FUNCtion FFT command 16-16
response

data 1-21
generation 6-12

responses, buffered 6-12
result state code, and SENDvalid 23-143
RESults? 20-6, 23-123
Returning control to system computer 2-11
rise time measurement setup 23-7

RISetime 23-126
RJDJ

ALL? 23-128
BER 23-130, 23-131
EDGE 23-133
INTerpolate 23-134
PLENgth 23-135
SOURce 23-137
STATe 23-139
TJRJDJ 23-140
UNITs 23-141

RMS voltage, and VRMS 23-201
ROLL 28-7
Root level command

MTEE 25-18
Root level commands 25-2

AER? 25-4, 25-5, 25-24
ATER? 25-6, 25-9
AUToscale 25-7, 25-8, 25-9, 25-10
BEEP 25-11, 25-16, 25-17
BLANk 25-12
CDISplay 25-13
DIGitize 25-14
MODel? 25-20
OPEE 25-21
OPER? 25-22
OVLRegister? 25-23
PRINt 25-25
RECall 25-26
RUN 25-27
SERial 25-28
SINGle 25-29
STOP 25-32
STORe 25-33, 25-34
STORe WAVEform 25-35
TER? 25-36
VIEW 25-37

ROW 15-15
RQC (Request Control) 4-4

bit 12-6, 12-8
RQS (Request Service) 4-4

and *STB 12-20
Default 2-4

RQS/MSS bit 12-21
RSI

Description 5-3
Introduction 5-2
Using the Mouse 5-5, 5-6

*RST (Reset) 12-16
RTIMe 8-9
rule of truncation 6-3
rules of traversal 6-5
RUMode 22-36
RUN 25-27

and GET relationship 2-11
RUNT

HYSTeresis 19-12
PATTern 19-16
SOURce 19-14
ULEVel 19-15

S
sample programs 7-2

segments 7-3
sample rate 8-20, 8-23
sampling mode 8-9
saturation 15-17
*SAV (Save) 12-17
SAVE 31-6
save/recall register 12-15, 12-17
SAVe:IMAGe 14-10
SAVe:JITTer 14-11, 14-12
SAVe:MEASurements 14-13
SAVe:SETup 14-14
SAVe:WAVeform 14-15
SAVE|STORe

in MTESt AMASk command 22-10
saving and loading 14-2
SCALe 10-56, 28-8

Y1 22-42
SCOLor 15-16
SCOPETEST

in self-test commands 26-4
SCRatch 23-142
SCReen

HARDcopy AREA 17-3
SEGMented 14-36

COUNt? 30-54
TTAG? 30-55, 30-56

segments of sample programs 7-3
Selected Device Clear (SDC) 2-11
Selecting Multiple Subsystems 1-14
self test 12-23
Self-Test Commands 26-2

CANCel 26-3
SCOPETEST 26-4

Index

Index-16

semicolon usage 1-8
sending compound queries 3-4
SENDvalid 23-143
separator 1-5
Sequential and Overlapped Commands

6-12
SERial

SOURce 19-17
SERial (SERial number) 25-28
Serial Poll

Disabling 2-11
serial poll

(SPOLL) in example 4-9
of the Status Byte Register 4-9

serial prefix, reading 12-9
Service Request

Code and Capability 2-5
Service Request Enable

(*SRE) 12-18
Register (SRE) 4-10
Register Bits 12-19
Register Default 2-4

setting
bits in the Service Request Enable

Register 4-10
horizontal tracking 16-24
Standard Event Status Enable Register

bits 4-12
time and date 27-16
TRG bit 4-10
voltage and time markers 21-2

setting up
for programming 1-14
the instrument 1-15

SETup 27-14
setup recall 12-15
setup violation mode 29-144
SETuptime 23-144
SHOLd CSOurce EDGE 29-56
SHOLd DSOurce 29-57
SHOLd HoldTIMe 29-58
SHOLd MODE 29-59
Short form 1-11
short-form headers 1-11
short-form mnemonics 6-3
simple command header 1-7
SINGle 25-29
SIZE

in HISTogram SCALe command 18-6
SKEW, in CALibrate command 11-7
SLEWrate 23-147
SLOPe

and STATe 29-64, 29-105
in TRIG ADV EDLY ARM 29-110
in TRIG ADV EDLY EVENt 29-113
in TRIG ADV EDLY TRIGger 29-115
in TRIG ADV STATe 29-105
in TRIG ADV TDLY ARM 29-119
in TRIG ADV TDLY TRIGger 29-122
in TRIG DEL EDEL 29-33
in TRIG DEL TRIGger 29-37
in TRIG STATe 29-64
in TRIGger EDGE 29-39

SMOoth 16-42
SOFailure

in MTESt RUMode command 22-38
software version, reading 12-9
SOURce 19-14, 19-17, 19-20, 22-44,

23-149, 30-57
and GLITch 29-42
and measurements 23-8
and RUNT 29-53
in HISTogram WINDow command

18-8
in MTEST AMASk command 22-8
in TRIG ADV COMM 29-93
in TRIG ADV EDLY ARM 29-109
in TRIG ADV EDLY EVENt 29-112
in TRIG ADV EDLY TRIGger 29-114
in TRIG ADV STV 29-127
in TRIG ADV TDLY ARM 29-118
in TRIG ADV TDLY TRIGger 29-121
in TRIG ADV UDTV 29-135
in TRIG COMM 29-28
in TRIG DEL EDEL 29-32
in TRIG DEL TRIGger 29-36
in TRIGger EDGE 29-40
in TRIGger GLITch 29-42
in TRIGger RUNT 29-53

spaces and commas 1-6
spelling of headers 1-11
SPOLarity

in TRIG ADV STV 29-128
in TRIG TV STV 29-74, 29-76

SPOLL example 4-9
SQRT 16-44

SQUare 16-45
Square Brackets 1-5
SRATe 8-20, 8-23
*SRE (Service Request Enable) 12-18
SRE (Service Request Enable Register)

4-10
Standard Event Status Enable Register

(SESER) 4-12
Bits 12-6
Default 2-4

Standard Event Status Register
bits 12-8

Standard Event Status Register (ESR) 4-11
Standard Status Data Structure Model 4-2
STARt | STOP 22-46
STATe 19-21
STATistics 23-151
status 1-22

of an operation 4-2
Status Byte

(*STB) 12-20
Status Byte Register 4-8, 4-9

and serial polling 4-9
bits 12-21

Status Registers 1-22, 12-3
Status Reporting 4-2

Bit Definitions 4-3
Data Structures 4-5

Status Reporting Decision Chart 4-20
STATus, in CALibrate command 11-8
*STB (Status Byte) 12-20
STDDev

in MEASure HISTogram command
23-78

STIMe 22-47, 22-49
STOP 25-32
STORe 25-33, 25-34
STORe WAVEform 25-35
storing waveform

sample program 7-13
STRing 15-19
string variables 1-20

example 1-20
string, quoted 15-13
strings, alphanumeric 1-11
STV commands 29-123
SUBTract 16-46
suffix multipliers 1-12, 3-5

Index

Index-17

suffix units 3-5
summary bits 4-8
SWEep

in TRIGger 29-22
syntax error 33-5
SYSTem

SETup and *LRN 12-11
System Commands 27-2

DATE 27-3
DEBug 27-4
DSP 27-6
ERRor? 27-7
HEADer 27-8, 27-10
LONGform 27-11
PRESet 27-13
SETup 27-14
TIME 27-16

System Computer
Returning control to 2-11

T
Talker

Code and Capability 2-5
Unaddressing 2-11

TEDGe
in MEASure command 23-152

temperature and calibration 11-3
TER? (Trigger Event Register) 25-36
termination of message during hardcopy

3-4
Terminator 1-13
TEST 20-7
Test (*TST) 12-23
TEXT 15-21
THReshold

in MEASure FFT command 23-61
THResholds

ABSolute 23-154
HYSTeresis 23-156
METHod 23-158
PERCent 23-160
TOPBase 23-162, 23-164

TIEClock2 23-166
TIEData 23-169, 23-175
TIME 27-16

and RUNT 29-54
in TRIGger RUNT 29-54

time and date, setting 27-2

Time Base Commands 28-2
POSition 28-3
RANGe 28-4
REFClock 28-5
REFerence 28-6
ROLL 28-7
SCALe 28-8
VIEW 28-9
WINDow DELay 28-10
WINDow RANGe 28-13

time buckets
and POINts? 30-46

time information
of waveform 7-13

time scale
operands and functions 16-3

TIMeout SOURce 29-66
TIMeout TIME 29-67
TITLe? 22-48
TMAX 23-176
TMIN 23-178
transferring waveform data 30-2

sample program 7-10
TRANsition DIRection 29-68
TRANsition SOURce 29-69
TRANsition TIME 29-70, 29-79
TRANsition TYPE 29-71
transition violation mode 29-170
transmission mode

and FORMat 30-43
traversal rules 6-5
Tree Traversal

Examples 6-11
Rules 6-5

*TRG (Trigger) 12-22
TRG

bit 12-19, 12-21
bit in the status byte 4-10
Event Enable Register 4-4

Trigger
(*TRG) 12-22
*TRG status bit 4-4

Trigger Commands 29-2
PATTern THReshold LEVel 29-98,

29-106
TRIG ADV COMM BWID 29-88
TRIG ADV COMM ENCode 29-89
TRIG ADV COMM LEVel 29-90

TRIG ADV COMM PATTern 29-91
TRIG ADV COMM POLarity 29-92
TRIG ADV COMM SOURce 29-93
TRIG ADV EDLY ARM SLOPe

29-110
TRIG ADV EDLY ARM SOURce

29-109
TRIG ADV EDLY EVENt DELay

29-111
TRIG ADV EDLY EVENt SLOPe

29-113
TRIG ADV EDLY EVENt SOURce

29-112
TRIG ADV EDLY TRIG SLOPe

29-115
TRIG ADV EDLY TRIG SOURce

29-114
TRIG ADV PATT CONDition 29-96
TRIG ADV PATT LOGic 29-97
TRIG ADV STATe CLOCk 29-102
TRIG ADV STATe LOGic 29-103
TRIG ADV STATe LTYPe 29-104
TRIG ADV STATe SLOPe 29-105
TRIG ADV STV FIELd 29-125
TRIG ADV STV LINE 29-126
TRIG ADV STV SOURce 29-127
TRIG ADV STV SPOLarity 29-128
TRIG ADV TDLY ARM SLOPe

29-119
TRIG ADV TDLY ARM SOURce

29-118
TRIG ADV TDLY DELay 29-120
TRIG ADV TDLY TRIG SLOPe

29-122
TRIG ADV TDLY TRIG SOURce

29-121
TRIG ADV UDTV ENUMber 29-132
TRIG ADV UDTV PGTHan 29-133
TRIG ADV UDTV POLarity 29-134
TRIG ADV UDTV SOURce 29-135
TRIG ADV VIOL MODE 29-137
TRIG ADV VIOL PWID DIR 29-140
TRIG ADV VIOL PWID POL 29-141
TRIG ADV VIOL PWID WIDT

29-143
TRIG ADV VIOL PWIDth 29-142
TRIG ADV VIOL SET HOLD CSO

29-155

Index

Index-18

TRIG ADV VIOL SET HOLD CSO
EDGE 29-157

TRIG ADV VIOL SET HOLD CSO
LEV 29-156

TRIG ADV VIOL SET HOLD DSO
29-158

TRIG ADV VIOL SET HOLD DSO
HTHR 29-159

TRIG ADV VIOL SET HOLD DSO
LTHR 29-160

TRIG ADV VIOL SET HOLD TIME
29-161

TRIG ADV VIOL SET MODE 29-147
TRIG ADV VIOL SET SET CSO

29-148
TRIG ADV VIOL SET SET CSO

EDGE 29-150
TRIG ADV VIOL SET SET CSO LEV

29-149
TRIG ADV VIOL SET SET DSO

29-151
TRIG ADV VIOL SET SET DSO

HTHR 29-152
TRIG ADV VIOL SET SET DSO

LTHR 29-153
TRIG ADV VIOL SET SET TIME?

29-154
TRIG ADV VIOL SET SHOL CSO

29-162
TRIG ADV VIOL SET SHOL CSO

EDGE 29-164
TRIG ADV VIOL SET SHOL CSO

LEV 29-163
TRIG ADV VIOL SET SHOL DSO

29-165
TRIG ADV VIOL SET SHOL DSO

HTHR 29-166
TRIG ADV VIOL SET SHOL DSO

LTHR 29-167
TRIG ADV VIOL SET SHOL HTIMe

29-169
TRIG ADV VIOL SET SHOL STIMe

29-168
TRIG ADV VIOL TRAN 29-172
TRIG ADV VIOL TRAN SOUR

29-173
TRIG ADV VIOL TRAN SOUR

HTHR 29-174

TRIG ADV VIOL TRAN SOUR
LTHR 29-175

TRIG ADV VIOL TRAN TYPE
29-176

TRIG AND:ENABle 29-12
TRIG AND:SOURce 29-13
TRIG COMM BWID 29-24
TRIG COMM ENCode 29-25
TRIG COMM PATTern 29-26
TRIG COMM POLarity 29-27
TRIG COMM SOURce 29-28
TRIG DEL ARM SLOPe 29-30
TRIG DEL ARM SOURce 29-29
TRIG DEL EDEL COUN 29-31
TRIG DEL EDEL SLOPe 29-33
TRIG DEL EDEL SOURce 29-32
TRIG DEL TDEL TIME 29-35
TRIG DEL TRIG SLOPe 29-37
TRIG DEL TRIG SOURce 29-36
TRIG EDGE COUPling 29-38
TRIG EDGE SLOPe 29-39
TRIG EDGE SOURce 29-40
TRIG GLITch POLarity 29-41
TRIG GLITch SOURce 29-42
TRIG GLITch WIDTh 29-43
TRIG HOLDoff 29-14, 29-15, 29-16,

29-17
TRIG HTHR 29-18
TRIG HYSTeresis 29-19
TRIG LEVel 29-20
TRIG LTHR 29-21
TRIG PATT CONDition 29-44
TRIG PATT LOGic 29-45
TRIG PWID DIR 29-46
TRIG PWID POL 29-47
TRIG PWID WIDT 29-50
TRIG PWIDth SOURce 29-48
TRIG PWIDth TPOInt 29-49
TRIG RUNT POLarity 29-51
TRIG RUNT QUALified 29-52, 29-78
TRIG RUNT SOURce 29-53
TRIG RUNTTIME 29-54
TRIG SHOL CSO 29-55
TRIG SHOL CSO EDGE 29-56
TRIG SHOL DSO 29-57
TRIG SHOL HTIMe 29-58
TRIG SHOL MODE 29-59
TRIG SHOL STIMe 29-60

TRIG STATe CLOCk 29-61
TRIG STATe LOGic 29-62
TRIG STATe LTYPe 29-63
TRIG STATe SLOPe 29-64
TRIG SWEep 29-22
TRIG TIM CONDition 29-65
TRIG TIM SOUR 29-66
TRIG TIM TIME 29-67
TRIG TRAN DIRection 29-68
TRIG TRAN SOUR 29-69
TRIG TRAN TIME 29-70, 29-79
TRIG TRAN TYPE 29-71
TRIG TV SOURce 29-75
TRIG TV STV FIELd 29-73
TRIG TV STV LINE 29-72
TRIG TV STV SPOLarity 29-74, 29-76
TRIG TV UDTV ENUMber 29-77
TRIG TV UDTV PGTHan 29-80
TRIG TV UDTV POLarity 29-81
TRIG WIND SOUR 29-83
TRIG WIND TIME 29-84
TRIG WIND TPOI 29-85
TRIG WINDow CONDition 29-82
TRIGger DELay MODE 29-34
TRIGger MODE 29-10

Trigger Event Register (TRG) 4-10
trigger mode 29-7

ADVanced 29-7
advanced delay 29-107, 29-116
advanced TV 29-123, 29-129
COMM 29-86
delay 29-108, 29-117
EDGE 29-23
GLITch 29-40
NTSC TV 29-123
PAL-M TV 29-123
pattern 29-95
state 29-101
User Defined TV 29-129
valid commands 29-8
violation types 29-136

trigger other instruments 11-6
triggering

for User Defined TV mode 29-130
truncating numbers 1-12
Truncation Rule 6-3
*TST (Test) 12-23
TSTArt 21-5

Index

Index-19

TSTOp 21-7, 21-10
TVOLt 23-180
TYPE query 30-60

U
UDTV commands 29-129
ULEVel 19-15
ULIMit 19-7, 20-8
Unaddressing all listeners 2-11
UNITinterval 23-183
UNITs 10-46, 10-57

in MTESt AMASk command 22-11
units, vertical 10-46, 10-57
UNKnown vertical units 10-46, 10-57
uppercase 1-11

headers 1-11
letters and responses 1-11

URQ bit (User Request) 12-5
User Request (URQ) status bit 4-3
User Request Bit (URQ) 12-5
User-Defined Measurements 23-7
Using the Digitize Command 1-17
USR bit 12-19, 12-21

V
VAMPlitude 23-185
VAVerage 23-187
VBASe 23-189
version of software, reading 12-9
VERSus 16-48
VERTical 16-50
vertical

axis control 10-2
axis offset, and YRANge 31-9
scaling and functions 16-2
scaling, and YRANge 31-10

vertical axis, full-scale 10-55
vertical units 10-46, 10-57
VIEW 25-37, 28-9, 30-61
VIEW and BLANk 25-12
VIOLation MODE 29-137
violation modes for trigger 29-136
VIOLation PWIDth DIRection 29-140
VIOLation PWIDth POLarity 29-141
VIOLation PWIDth SOURce 29-142
VIOLation PWIDth WIDTh 29-143
VIOLation SETup HOLD CSOurce 29-155
VIOLation SETup HOLD CSOurce EDGE

29-157
VIOLation SETup HOLD CSOurce LEVel

29-156
VIOLation SETup HOLD DSOurce 29-158
VIOLation SETup HOLD DSOurce

HTHReshold 29-159
VIOLation SETup HOLD DSOurce

LTHReshold 29-160
VIOLation SETup HOLD TIME 29-161
VIOLation SETup MODE 29-147
VIOLation SETup SETup CSOurce 29-148
VIOLation SETup SETup CSOurce EDGE

29-150
VIOLation SETup SETup CSOurce LEVel

29-149
VIOLation SETup SETup DSOurce 29-151
VIOLation SETup SETup DSOurce

HTHReshold 29-152
VIOLation SETup SETup DSOurce

LTHReshold 29-153
VIOLation SETup SETup TIME 29-154
VIOLation SETup SHOLd CSOurce

29-162
VIOLation SETup SHOLd CSOurce

EDGE 29-164
VIOLation SETup SHOLd CSOurce

LEVel 29-163
VIOLation SETup SHOLd DSOurce

29-165
VIOLation SETup SHOLd DSOurce

HTHReshold 29-166
VIOLation SETup SHOLd DSOurce

LTHReshold 29-167
VIOLation SETup SHOLd HoldTIMe

29-169
VIOLation SETup SHOLd SetupTIMe

29-168
VIOLation TRANsition 29-172
VIOLation TRANsition SOURce 29-173
VIOLation TRANsition SOURce

HTHReshold 29-174
VIOLation TRANsition SOURce

LTHReshold 29-175
VIOLation TRANsition TYPE 29-176
VLOWer 23-191
VMAX 23-193
VMIDdle 23-195
VMIN 23-197

voltage at center screen 10-32, 10-44
voltage information

of waveform 7-13
VOLTS as vertical units 10-46, 10-57
VPP 23-199
VRMS 23-201
VSTArt 21-9
VTIMe 23-204
VTOP 23-206
VUPPer 23-208

W
*WAI (Wait-to-Continue) 12-24
Wait-to-Continue (*WAI) 12-24
WATTS as vertical units 10-46, 10-57
waveform

data and preamble 30-4
saving 14-15
storing time and voltage 7-13
time and voltage information 7-13
view parameters 30-62

Waveform Commands 30-2, 32-2
BANDpass? 30-6, 32-4, 32-5, 32-6,

32-7, 32-8, 32-9, 32-13, 32-14,
32-15, 32-16, 32-17, 32-18, 32-19,
32-20, 32-21, 32-22, 32-23, 32-24,
32-25, 32-26, 32-27, 32-31, 32-32,
32-33, 32-34, 32-35, 32-36, 32-37,
32-38, 32-39, 32-40, 32-41, 32-42

BYTeorder 30-7
COMPlete? 30-8
COUNt? 30-9
COUPling? 30-10
FORMat 30-43
POINts? 30-46
TYPE? 30-60
VIEW 30-61
WAVeform SOURce 30-57
XDISplay? 30-63
XINCrement? 30-64
XORigin? 30-65
XRANge? 30-66
XREFerence? 30-67
XUNits? 30-68
YDISplay? 30-69
YINCrement? 30-70
YORigin? 30-71
YRANge? 30-72

Index

Index-20

YREFerence? 30-73
YUNits? 30-74

Waveform Memory Commands 31-2
DISPlay 31-3, 31-4
LOAD 31-5
SAVE 31-6
XOFFset 31-7
XRANge 31-8
YOFFset 31-9
YRANge 31-10

waveform type
and COMPlete? 30-8
and COUNt? 30-9
and TYPE? 30-60

WAVeforms?
in MTEST COUNt command 22-23

white space (separator) 1-5
WIDTh

and GLITch 29-43
in TRIGger GLITch 29-43

WINDow
and VIEW 30-61
DELay 28-10
in FUNCtion FFT command 16-17
POSition 28-12
RANGe 28-13
SCALe 28-14

WINDow and VIEW 28-9
WINDow SOURce 29-83
WINDow TIME 29-84
WINDow TPOInt 29-85
WORD

and FORMat 30-44
Understanding the format 30-39

writing
quoted strings 15-13
text to the screen 15-19

X
x axis, controlling 28-2
X vs Y 16-48
X1

in MTESt SCALe command 22-40
X1Position 21-12
X1Position|LLIMit

in HISTogram WINDow command
18-10

X1Y1source 21-14

X2Position 21-13, 21-20
X2Position|RLIMit

in HISTogram WINDow command
18-11

X2Y2source 21-16
x-axis

offset, and XOFFset 31-7
range, and XRANge 31-8
units and XUNits 30-68

x-axis duration
and XRANge? 30-66

XDELta
in MTESt AMASk command 22-12
in MTESt SCALE command 22-41

XDELta? 21-18
XDISplay query 30-63
XINCrement query 30-64
XOFFset 31-7
XORigin query 30-65
XRANge 31-8
XRANge query 30-66
XREFerence? 30-67
XUNits query 30-68

Y
Y1

in MTESt SCALe command 22-42
Y1Position 21-19

in HISTogram WINDow command
18-12

Y2
in MTESt SCALe command 22-43

Y2Position
in HISTogram WINDow command

18-13
Y-axis control 10-2
YDELta

in MTESt AMASk command 22-14
YDELta? 21-21
YDISplay? 30-69
YINCrement query 30-70
YOFFset 31-9
YORigin query 30-71
YRANge 31-10
YRANge query 30-72
YREFerence query 30-73
YUNits query 30-74

Z
ZONE

MODE 19-18
PLACement 19-19
SOURce 19-20
STATe 19-21

Agilent Technologies Inc.
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

Safety
Notices
This apparatus has been
designed and tested in accor-
dance with IEC Publication
1010, Safety Requirements for
Measuring Apparatus, and
has been supplied in a safe
condition. This is a Safety
Class I instrument (provided
with terminal for protective
earthing). Before applying
power, verify that the correct
safety precautions are taken
(see the following warnings).
In addition, note the external
markings on the instrument
that are described under
"Safety Symbols."

Warnings
• Before turning on the instru-
ment, you must connect the
protective earth terminal of
the instrument to the protec-
tive conductor of the (mains)
power cord. The mains plug
shall only be inserted in a
socket outlet provided with a
protective earth contact. You
must not negate the protec-
tive action by using an exten-
sion cord (power cable)
without a protective conduc-
tor (grounding). Grounding
one conductor of a two-con-
ductor outlet is not sufficient
protection.
• Only fuses with the required
rated current, voltage, and
specified type (normal blow,
time delay, etc.) should be
used. Do not use repaired
fuses or short-circuited fuse-
holders. To do so could cause
a shock or fire hazard.
• If you energize this instru-
ment by an auto transformer
(for voltage reduction or
mains isolation), the common
terminal must be connected to
the earth terminal of the
power source.

• Whenever it is likely that the
ground protection is impaired,
you must make the instru-
ment inoperative and secure it
against any unintended opera-
tion.
• Service instructions are for
trained service personnel. To
avoid dangerous electric
shock, do not perform any ser-
vice unless qualified to do so.
Do not attempt internal ser-
vice or adjustment unless
another person, capable of
rendering first aid and resus-
citation, is present.
• Do not install substitute
parts or perform any unau-
thorized modification to the
instrument.
• Capacitors inside the instru-
ment may retain a charge
even if the instrument is dis-
connected from its source of
supply.
• Do not operate the instru-
ment in the presence of flam-
mable gasses or fumes.
Operation of any electrical
instrument in such an envi-
ronment constitutes a definite
safety hazard.
• Do not use the instrument in
a manner not specified by the
manufacturer.

To clean the instrument
If the instrument requires
cleaning: (1) Remove power
from the instrument. (2) Clean
the external surfaces of the
instrument with a soft cloth
dampened with a mixture of
mild detergent and water. (3)
Make sure that the instru-
ment is completely dry before
reconnecting it to a power
source.

Safety Symbols

Instruction manual symbol:
the product is marked with
this symbol when it is neces-
sary for you to refer to the
instruction manual in order to
protect against damage to the
product..

Hazardous voltage symbol.

Earth terminal symbol: Used
to indicate a circuit common
connected to grounded chas-
sis.

!

Notices
© Agilent Technologies, Inc.

2010
No part of this manual may be
reproduced in any form or by
any means (including elec-
tronic storage and retrieval or
translation into a foreign lan-
guage) without prior agree-
ment and written consent
from Agilent Technologies,
Inc. as governed by United
States and international copy-
right laws.

Manual Part Number
54904-97002, July 2010

Print History

54904-97002, July 2010
Agilent Technologies, Inc.
1601 California Street
Palo Alto, CA 94304 USA

Restricted Rights Legend
If software is for use in the
performance of a U.S. Gov-
ernment prime contract or
subcontract, Software is deliv-
ered and licensed as “Com-
mercial computer software”
as defined in DFAR 252.227-
7014 (June 1995), or as a
“commercial item” as defined
in FAR 2.101(a) or as
“Restricted computer soft-
ware” as defined in FAR
52.227-19 (June 1987) or any
equivalent agency regulation
or contract clause. Use, dupli-
cation or disclosure of Soft-
ware is subject to Agilent
Technologies’ standard com-
mercial license terms, and
non-DOD Departments and
Agencies of the U.S. Govern-
ment will receive no greater
than Restricted Rights as
defined in FAR 52.227-
19(c)(1-2) (June 1987). U.S.
Government users will receive
no greater than Limited
Rights as defined in FAR
52.227-14 (June 1987) or
DFAR 252.227-7015 (b)(2)
(November 1995), as applica-

ble in any technical data.

Document Warranty
The material contained in
this document is provided
“as is,” and is subject to
being changed, without
notice, in future editions.
Further, to the maximum
extent permitted by appli-
cable law, Agilent dis-
claims all warranties,
either express or implied,
with regard to this manual
and any information con-
tained herein, including
but not limited to the
implied warranties of mer-
chantability and fitness for
a particular purpose. Agi-
lent shall not be liable for
errors or for incidental or
consequential damages in
connection with the fur-
nishing, use, or perfor-
mance of this document or
of any information con-
tained herein. Should Agi-
lent and the user have a
separate written agree-
ment with warranty terms
covering the material in
this document that conflict
with these terms, the war-
ranty terms in the sepa-
rate agreement shall
control.

Technology Licenses
The hardware and/or soft-
ware described in this docu-
ment are furnished under a
license and may be used or
copied only in accordance
with the terms of such license.

WARNING

A WARNING notice
denotes a hazard. It
calls attention to an
operating procedure,
practice, or the like that,
if not correctly
performed or adhered
to, could result in
personal injury or
death. Do not proceed
beyond a WARNING
notice until the
indicated conditions are
fully understood and
met.

CAUTION

A CAUTION notice
denotes a hazard. It
calls attention to an
operating procedure,
practice, or the like that,
if not correctly
performed or adhered
to, could result in
damage to the product
or loss of important
data. Do not proceed
beyond a CAUTION
notice until the
indicated conditions are
fully understood and
met.

Trademark
Acknowledgements
Windows and MS Windows
are U.S. registered trade-
marks of Microsoft Corpora-
tion.

	Introduction to Programming
	Communicating with the Oscilloscope
	Output Command
	Device Address
	Instructions
	Instruction Header
	White Space (Separator)
	Braces
	Ellipsis
	Square Brackets
	Command and Query Sources
	Program Data
	Header Types
	Duplicate Mnemonics
	Query Headers
	Program Header Options
	Character Program Data
	Numeric Program Data
	Embedded Strings
	Program Message Terminator
	Common Commands within a Subsystem
	Selecting Multiple Subsystems
	Programming Getting Started
	Initialization
	Example Program using HP Basic
	Using the DIGITIZE Command
	Receiving Information from the Oscilloscope
	String Variable Example
	Numeric Variable Example
	Definite-Length Block Response Data
	Multiple Queries
	Oscilloscope Status

	Connectivity
	LAN Interface Connector
	GPIB Interface Connector
	Default Startup Conditions
	Interface Capabilities
	GPIB Command and Data Concepts
	Communicating Over the GPIB Interface
	Communicating Over the LAN Interface
	Communicating via Telnet and Sockets
	Bus Commands

	Message Communication and System Functions
	Protocols

	Status Reporting
	Status Reporting Data Structures
	Status Byte Register
	Service Request Enable Register
	Message Event Register
	Trigger Event Register
	Standard Event Status Register
	Standard Event Status Enable Register
	Operation Status Register
	Operation Status Enable Register
	Mask Test Event Register
	Mask Test Event Enable Register
	Acquisition Done Event Register
	Process Done Event Register
	Trigger Armed Event Register
	Auto Trigger Event Register
	Error Queue
	Output Queue
	Message Queue
	Clearing Registers and Queues

	Remote Acquisition Synchronization
	Introduction
	Programming Flow
	Setting Up the Oscilloscope
	Acquiring a Waveform
	Retrieving Results
	Acquisition Synchronization
	Blocking Synchronization
	Polling Synchronization With Timeout

	Single Shot Device Under Test (DUT)
	Averaging Acquisition Synchronization

	Programming Conventions
	Truncation Rule
	The Command Tree
	Infinity Representation
	Sequential and Overlapped Commands
	Response Generation
	EOI

	Sample Programs
	Sample Program Structure
	Sample C Programs
	Listings of the Sample Programs
	gpibdecl.h Sample Header
	learnstr.c Sample Program
	sicl_IO.c Sample Program
	natl_IO.c Sample Program
	init.bas Sample Program
	lrn_str.bas Sample Program

	Acquire Commands
	AVERage
	AVERage:COUNt
	COMPlete
	COMPlete:STATe
	INTerpolate
	MODE
	POINts:ANALog
	POINts:DIGital?
	POINts:AUTO
	SEGMented:COUNt
	SEGMented:INDex
	SEGMented:TTAGs
	SRATe:ANALog (Analog Sample RATe)
	SRATe Sample Rate Tables
	SRATe:DIGital (Digital Channels Sample RATe)
	SRATe:ANALog:AUTO
	SRATe:DIGital:AUTO

	Bus Commands
	B1:TYPE
	BIT<M>
	BITS
	CLEar
	CLOCk
	:CLOCk:SLOPe
	DISPlay
	LABel
	READout

	Channel Commands
	BWLimit
	COMMonmode
	DIFFerential
	DIFFerential:SKEW
	DISPlay
	DISPlay:AUTO
	DISPlay:OFFSet
	DISPlay:RANGe
	DISPlay:SCALe
	INPut
	ISIM:APPLy
	ISIM:BANDwidth
	ISIM:BWLimit
	ISIM:CONVolve
	ISIM:DEConvolve
	ISIM:DELay
	ISIM:SPAN
	ISIM:STATe
	LABel
	OFFSet
	PROBe
	PROBe:ATTenuation
	PROBe:COUPling
	PROBe:EADapter
	PROBe:ECOupling
	PROBe:EXTernal
	PROBe:EXTernal:GAIN
	PROBe:EXTernal:OFFSet
	PROBe:EXTernal:UNITs
	PROBe:GAIN
	PROBe:HEAD:ADD
	PROBe:HEAD:DELete ALL
	PROBe:HEAD:SELect
	PROBe:ID?
	PROBe:SKEW
	PROBe:STYPe
	RANGe
	SCALe
	UNITs

	Calibration Commands
	Oscilloscope Calibration
	Probe Calibration
	OUTPut
	SKEW
	STATus?

	Common Commands
	*CLS (Clear Status)
	*ESE (Event Status Enable)
	*ESR? (Event Status Register)
	*IDN? (Identification Number)
	*LRN? (Learn)
	*OPC (Operation Complete)
	*OPT? (Option)
	*PSC (Power-on Status Clear)
	*RCL (Recall)
	*RST (Reset)
	*SAV (Save)
	*SRE (Service Request Enable)
	*STB? (Status Byte)
	*TRG (Trigger)
	*TST? (Test)
	*WAI (Wait)

	Digital Commands
	DISPlay
	LABel
	SIZE
	THReshold

	Disk Commands
	CDIRectory
	COPY
	DELete
	DIRectory?
	LOAD
	MDIRectory
	PWD?
	SAVE:IMAGe
	SAVE:JITTer
	SAVE:LISTing
	SAVE:MEASurements
	SAVE:SETup
	SAVE:WAVeform
	CSV and TSV Header Format
	BIN Header Format
	SEGMented

	Display Commands
	CGRade
	CGRade:LEVels?
	COLumn
	CONNect
	DATA?
	GRATicule
	LABel
	LINE
	PERSistence
	ROW
	SCOLor
	STRing
	TAB
	TEXT

	Function Commands
	FUNCtion<N>?
	ABSolute
	ADD
	AVERage
	COMMonmode
	DIFF (Differentiate)
	DISPlay
	DIVide
	FFT:FREQuency
	FFT:REFerence
	FFT:RESolution?
	FFT:WINDow
	FFTMagnitude
	FFTPhase
	HIGHpass
	HORizontal
	HORizontal:POSition
	HORizontal:RANGe
	INTegrate
	INVert
	LOWPass
	MAGNify
	MAXimum
	MINimum
	MULTiply
	OFFSet
	RANGe
	SMOoth
	SQRT
	SQUare
	SUBTract
	VERSus
	VERTical
	VERTical:OFFSet
	VERTical:RANGe

	Hardcopy Commands
	AREA
	DPRinter
	FACTors
	IMAGe
	PRINters?

	Histogram Commands
	AXIS
	MODE
	SCALe:SIZE
	WINDow:DEFault
	WINDow:SOURce
	WINDow:LLIMit
	WINDow:RLIMit
	WINDow:BLIMit
	WINDow:TLIMit

	InfiniiScan (ISCan) Commands
	DELay
	MEASurement:FAIL
	MEASurement:LLIMit
	MEASurement
	MEASurement:ULIMit
	MODE
	NONMonotonic:EDGE
	NONMonotonic:HYSTeresis
	NONMonotonic:SOURce
	RUNT:HYSTeresis
	RUNT:LLEVel
	RUNT:SOURce
	RUNT:ULEVel
	SERial:PATTern
	SERial:SOURce
	ZONE<N>:MODE
	ZONE<N>:PLACement
	ZONE:SOURce
	ZONE<N>:STATe

	Limit Test Commands
	FAIL
	LLIMit
	MEASurement
	RESults?
	TEST
	ULIMit

	Marker Commands
	CURSor?
	MODE
	TSTArt
	TSTOp
	VSTArt
	TVSTOp
	X1Position
	X2Position
	X1Y1source
	X2Y2source
	XDELta?
	Y1Position
	Y2Position
	YDELta?

	Mask Test Commands
	ALIGn
	AlignFIT
	AMASk:CREate
	AMASk:SOURce
	AMASk:SAVE | STORe
	AMASk:UNITs
	AMASk:XDELta
	AMASk:YDELta
	AUTO
	AVERage
	AVERage:COUNt
	COUNt:FAILures?
	COUNt:FUI?
	COUNt:FWAVeforms?
	COUNt:UI?
	COUNt:WAVeforms?
	DELete
	ENABle
	FOLDing
	FOLDing:BITS
	HAMPlitude
	IMPedance
	INVert
	LAMPlitude
	LOAD
	NREGions?
	PROBe:IMPedance?
	RUMode
	RUMode:SOFailure
	SCALe:BIND
	SCALe:X1
	SCALe:XDELta
	SCALe:Y1
	SCALe:Y2
	SOURce
	STARt | STOP
	STIMe
	TITLe?
	TRIGger:SOURce

	Measure Commands
	AREA
	BWIDth
	CDRRATE
	CGRade:CROSsing
	CGRade:DCDistortion
	CGRade:EHEight
	CGRade:EWIDth
	CGRade:EWINdow
	CGRade:JITTer
	CGRade:QFACtor
	CLEar
	CLOCk
	CLOCk:METHod
	CLOCk:METHod:DEEMphasis
	CLOCk:VERTical
	CLOCk:VERTical:OFFSet
	CLOCk:VERTical:RANGe
	CROSsing
	CTCDutycycle
	CTCJitter
	CTCNwidth
	CTCPwidth
	DATarate
	DELTatime
	DELTatime:DEFine
	DUTYcycle
	FALLtime
	FFT:DFRequency
	FFT:DMAGnitude
	FFT:FREQuency
	FFT:MAGNitude
	FFT:PEAK1
	FFT:PEAK2
	FFT:THReshold
	FREQuency
	HISTogram:HITS
	HISTogram:M1S
	HISTogram:M2S
	HISTogram:M3S
	HISTogram:MAX?
	HISTogram:MEAN?
	HISTogram:MEDian?
	HISTogram:MIN?
	HISTogram:PEAK?
	HISTogram:PP?
	HISTogram:STDDev?
	HOLDtime
	JITTer:HISTogram
	JITTer:MEASurement
	JITTer:SPECtrum
	JITTer:SPECtrum:HORizontal
	JITTer:SPECtrum:HORizontal:POSition
	JITTer:SPECtrum:HORizontal:RANGe
	JITTer:SPECtrum:VERTical
	JITTer:SPECtrum:VERTical:OFFSet
	JITTer:SPECtrum:VERTical:RANGe
	JITTer:SPECtrum:WINDow
	JITTer:STATistics
	JITTer:TRENd
	JITTer:TRENd:SMOoth
	JITTer:TRENd:SMOoth:POINts
	JITTer:TRENd:VERTical
	JITTer:TRENd:VERTical:OFFSet
	JITTer:TRENd:VERTical:RANGe
	NAME
	NCJitter
	NPERiod
	NPULses
	NWIDth
	OVERshoot
	PERiod
	PHASe
	PPULses
	PREShoot
	PWIDth
	QUALifier<M>:CONDition
	QUALifier<M>:SOURce
	QUALifier<M>:STATe
	RESults?
	RISetime
	RJDJ:ALL?
	RJDJ:BANDwidth
	RJDJ:BER
	RJDJ:EDGE
	RJDJ:INTerpolate
	RJDJ:PLENgth
	RJDJ:SOURce
	RJDJ:STATe
	RJDJ:TJRJDJ?
	RJDJ:UNITs
	SCRatch
	SENDvalid
	SETuptime
	SLEWrate
	SOURce
	STATistics
	TEDGe
	THResholds:ABSolute
	THResholds:HYSTeresis
	THResholds:METHod
	THResholds:PERCent
	THResholds:TOPBase:METHod
	THResholds:TOPBase:ABSolute
	TIEClock2
	TIEData
	TIEFilter:STARt
	TIEFilter:STATe
	TIEFilter:STOP
	TIEFilter:TYPE
	TMAX
	TMIN
	TVOLt
	UITouijitter
	UNITinterval
	VAMPlitude
	VAVerage
	VBASe
	VLOWer
	VMAX
	VMIDdle
	VMIN
	VPP
	VRMS
	VTIMe
	VTOP
	VUPPer
	WINdow
	24
	Pod Commands
	Pod Commands
	DISPlay
	Command
	<N>
	Example

	Query
	Returned Format

	THReshold
	Command
	<N>
	<value>

	Query
	Return format

	PSKew
	Command
	<value>
	Example

	Query
	Return format

	Root Level Commands
	ADER? (Acquisition Done Event Register)
	AER? (Arm Event Register)
	ATER? (Auto Trigger Event Register)
	AUToscale
	AUToscale:CHANnels {ALL | DISPlayed}
	AUToscale:PLACement {STACk | SEParate | OVERlay}
	AUToscale:VERTical
	BEEP
	BLANk
	CDISplay
	DIGitize
	DISable DIGital
	ENABle DIGital
	MTEE
	MTER?
	MODel?
	OPEE
	OPER?
	OVLRegister?
	PDER? (Processing Done Event Register)
	PRINt
	RECall:SETup
	RUN
	SERial (Serial Number)
	SINGle
	STATus?
	STOP
	STORe:JITTer
	STORe:SETup
	STORe:WAVeform
	TER? (Trigger Event Register)
	VIEW

	Self-Test Commands
	CANCel
	SCOPETEST

	System Commands
	DATE
	DEBug
	DSP
	ERRor?
	HEADer
	LOCK
	LONGform
	PRESet
	SETup
	TIME

	Time Base Commands
	POSition
	RANGe
	REFClock
	REFerence
	ROLL:ENABLE
	SCALe
	VIEW
	WINDow:DELay
	WINDow:POSition
	WINDow:RANGe
	WINDow:SCALe

	Trigger Commands
	Trigger Modes
	AND:ENABle
	AND:SOURce
	HOLDoff
	HOLDoff:MAX
	HOLDoff:MIN
	HOLDoff:MODe
	HTHReshold
	HYSTeresis
	LEVel
	LTHReshold
	SWEep
	COMM:BWIDth
	COMM:ENCode
	COMM:PATTern
	COMM:POLarity
	COMM:SOURce
	DELay:ARM:SOURce
	DELay:ARM:SLOPe
	DELay:EDELay:COUNt
	DELay:EDELay:SOURce
	DELay:EDELay:SLOPe
	DELay:MODE
	DELay:TDELay:TIME
	DELay:TRIGger:SOURce
	DELay:TRIGger:SLOPe
	EDGE:COUPling
	EDGE:SLOPe
	EDGE:SOURce
	GLITch:POLarity
	GLITch:SOURce
	GLITch:WIDTh
	PATTern:CONDition
	PATTern:LOGic
	PWIDth:DIRection
	PWIDth:POLarity
	PWIDth:SOURce
	PWIDth:TPOint
	PWIDth:WIDTh
	RUNT:POLarity
	RUNT:QUALified
	RUNT:SOURce
	RUNT:TIME
	SHOLd:CSOurce
	SHOLd:CSOurce:EDGE
	SHOLd:DSOurce
	SHOLd:HoldTIMe (HTIMe)
	SHOLd:MODE
	SHOLd:SetupTIMe
	STATe:CLOCk
	STATe:LOGic
	STATe:LTYPe
	STATe:SLOPe
	TIMeout:CONDition
	TIMeout:SOURce
	TIMeout:TIME
	TRANsition:DIRection
	TRANsition:SOURce
	TRANsition:TIME
	TRANsition:TYPE
	TV:LINE
	TV:MODE
	TV:POLarity
	TV:SOURce
	TV:STANdard
	TV:UDTV:ENUMber
	TV:UDTV:HSYNc
	TV:UDTV:HTIMe
	TV:UDTV:PGTHan
	TV:UDTV:POLarity
	WINDow:CONDition
	WINDow:SOURce
	WINDow:TIME
	WINDow:TPOint
	COMM:BWIDth
	COMM:ENCode
	COMM:LEVel
	COMM:PATTern
	COMM:POLarity
	COMM:SOURce
	PATTern:CONDition
	PATTern:LOGic
	:PATTern:THReshold:LEVel
	:PATTern:THReshold:POD<N>
	STATe:CLOCk
	STATe:LOGic
	STATe:LTYPe
	STATe:SLOPe
	:STATe:THReshold:LEVel
	EDLY:ARM:SOURce
	EDLY:ARM:SLOPe
	EDLY:EVENt:DELay
	EDLY:EVENt:SOURce
	EDLY:EVENt:SLOPe
	EDLY:TRIGger:SOURce
	EDLY:TRIGger:SLOPe
	TDLY:ARM:SOURce
	TDLY:ARM:SLOPe
	TDLY:DELay
	TDLY:TRIGger:SOURce
	TDLY:TRIGger:SLOPe
	STV:FIELd
	STV:LINE
	STV:SOURce
	STV:SPOLarity
	UDTV:ENUMber
	UDTV:PGTHan
	UDTV:POLarity
	UDTV:SOURce
	VIOLation:MODE
	VIOLation:PWIDth:DIRection
	VIOLation:PWIDth:POLarity
	VIOLation:PWIDth:SOURce
	VIOLation:PWIDth:WIDTh
	VIOLation:SETup:MODE
	VIOLation:SETup:SETup:SETup:CSOurce
	VIOLation:SETup:SETup:CSOurce:LEVel
	VIOLation:SETup:SETup:CSOurce:EDGE
	VIOLation:SETup:SETup:DSOurce
	VIOLation:SETup:SETup:DSOurce:HTHReshold
	VIOLation:SETup:SETup:DSOurce:LTHReshold
	VIOLation:SETup:SETup:TIME
	VIOLation:SETup:HOLD:CSOurce
	VIOLation:SETup:HOLD:CSOurce:LEVel
	VIOLation:SETup:HOLD:CSOurce:EDGE
	VIOLation:SETup:HOLD:DSOurce
	VIOLation:SETup:HOLD:DSOurce:HTHReshold
	VIOLation:SETup:HOLD:DSOurce:LTHReshold
	VIOLation:SETup:HOLD:TIME
	VIOLation:SETup:SHOLd:CSOurce
	VIOLation:SETup:SHOLd:CSOurce:LEVel
	VIOLation:SETup:SHOLd:CSOurce:EDGE
	VIOLation:SETup:SHOLd:DSOurce
	VIOLation:SETup:SHOLd:DSOurce:HTHReshold
	VIOLation:SETup:SHOLd:DSOurce:LTHReshold
	VIOLation:SETup:SHOLd:SetupTIMe (STIMe)
	VIOLation:SETup:SHOLd:HoldTIMe (HTIMe)
	VIOLation:TRANsition
	VIOLation:TRANsition:SOURce
	VIOLation:TRANsition:SOURce:HTHReshold
	VIOLation:TRANsition:SOURce:LTHReshold
	VIOLation:TRANsition:TYPE

	Waveform Commands
	BANDpass?
	BYTeorder
	COMPlete?
	COUNt?
	COUPling?
	DATA?
	DATA? Example for Digital Channels
	FORMat
	POINts?
	PREamble
	SEGMented:ALL
	SEGMented:COUNt?
	SEGMented:TTAG?
	SEGMented:XLISt?
	SOURce
	STReaming
	TYPE?
	VIEW
	XDISplay?
	XINCrement?
	XORigin?
	XRANge?
	XREFerence?
	XUNits?
	YDISplay?
	YINCrement?
	YORigin?
	YRANge?
	YREFerence?
	YUNits?

	Waveform Memory Commands
	CLEar
	DISPlay
	LOAD
	SAVE
	XOFFset
	XRANge
	YOFFset
	YRANge

	Serial Data Equalization Commands
	CTLequalizer:DISPlay
	CTLequalizer:SOURce
	CTLequalizer:DCGain
	CTLequalizer:P1
	CTLequalizer:P2
	CTLequalizer:RATe
	CTLequalizer:VERTical
	CTLequalizer:VERTical:OFFSet
	CTLequalizer:VERTical:RANGe
	CTLequalizer:ZERo
	SPRocessing:FFEQualizer:DISPlay
	SPRocessing:FFEQualizer:SOURce
	FFEQualizer:NPRecursor
	SPRocessing:FFEQualizer:NTAPs
	FFEequalizer:RATe
	SPRocessing:FFEQualizer:TAP
	SPRocessing:FFEQualizer:TAP:PLENgth
	SPRocessing:FFEQualizer:TAP:WIDTh
	SPRocessing:FFEQualizer:TAP:DELay
	SPRocessing:FFEQualizer:TAP:AUTomatic
	SPRocessing:FFEQualizer:TAP :BANDwidth
	SPRocessing:FFEQualizer:TAP :BWMode
	SPRocessing:FFEQualizer:TAP :TDELay
	SPRocessing:FFEQualizer:TAP :TDMode
	FFEQualizer:VERTical
	FFEQualizer:VERTical:OFFSet
	FFEQualizer:VERTical:RANGe
	SPRocessing:DFEQualizer:STATe
	SPRocessing:DFEQualizer:SOURce
	SPRocessing:DFEQualizer:NTAPs
	SPRocessing:DFEQualizer:TAP
	SPRocessing:DFEQualizer:TAP:WIDTh
	SPRocessing:DFEQualizer:TAP:DELay
	SPRocessing:DFEQualizer:TAP:MAX
	SPRocessing:DFEQualizer:TAP:MIN
	SPRocessing:DFEQualizer:TAP:GAIN
	SPRocessing:DFEQualizer:TAP:UTARget
	SPRocessing:DFEQualizer:TAP:LTARget
	SPRocessing:DFEQualizer:TAP:AUTomatic

	Error Messages
	Error Queue
	Error Numbers
	Command Error
	Execution Error
	Device- or Oscilloscope-Specific Error
	Query Error
	List of Error Messages

